{"title":"昼夜节律中断和ROS-NLRP3信号介导睡眠剥夺增强的泪腺二氧化硅纳米颗粒毒性。","authors":"Wenxiao Zhang, Di Qi, Xiaoting Pei, Dingli Lu, Mengru Ba, Shuting Xuan, Duliurui Huang, Tingting Yang, Jingwen Yang, Zhijie Li, Shenzhen Huang","doi":"10.1186/s12951-025-03630-5","DOIUrl":null,"url":null,"abstract":"<p><p>Sleep deprivation (SD) and exposure to engineered nanomaterials such as silica nanoparticles (SiNPs) are emerging risk factors for ocular surface disorders, particularly dry eye disease. However, the molecular mechanisms underlying their combined impact on lacrimal gland function remain unclear. In this study, we investigated the synergistic effects of SD and SiNPs exposure on circadian regulation, oxidative stress, inflammation, and structural integrity of the extraorbital lacrimal glands (ELGs) in C57BL/6J mice. Behavioral and physiological monitoring revealed that SD + SiNPs disrupted circadian locomotor activity and body temperature rhythms. Phenotypic assessments showed reduced tear secretion and ELG atrophy. RNA sequencing identified extensive transcriptomic reprogramming, including altered expression of core clock genes and enrichment of inflammatory and redox-related pathways. Increased reactive oxygen species (ROS) accumulation and γ-H2AX expression indicated oxidative DNA damage. Immunohistochemistry confirmed NLRP3 inflammasome activation, while Western blotting revealed enhanced phosphorylation of JAK2, STAT3, NF-κB p65, and IκBα, alongside upregulation of IL-17A. Elevated malondialdehyde levels further reflected oxidative lipid damage. These findings demonstrate that SD exacerbates SiNPs-induced ELG dysfunction via circadian disruption and activation of the ROS/NLRP3/IL-17A inflammatory axis. While these effects are currently limited to the lacrimal gland, future studies are needed to determine whether similar mechanisms contribute to broader systemic metabolic consequences.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"600"},"PeriodicalIF":12.6000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12403269/pdf/","citationCount":"0","resultStr":"{\"title\":\"Circadian disruption and ROS-NLRP3 signaling mediate sleep deprivation-enhanced silica nanoparticle toxicity in lacrimal glands.\",\"authors\":\"Wenxiao Zhang, Di Qi, Xiaoting Pei, Dingli Lu, Mengru Ba, Shuting Xuan, Duliurui Huang, Tingting Yang, Jingwen Yang, Zhijie Li, Shenzhen Huang\",\"doi\":\"10.1186/s12951-025-03630-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sleep deprivation (SD) and exposure to engineered nanomaterials such as silica nanoparticles (SiNPs) are emerging risk factors for ocular surface disorders, particularly dry eye disease. However, the molecular mechanisms underlying their combined impact on lacrimal gland function remain unclear. In this study, we investigated the synergistic effects of SD and SiNPs exposure on circadian regulation, oxidative stress, inflammation, and structural integrity of the extraorbital lacrimal glands (ELGs) in C57BL/6J mice. Behavioral and physiological monitoring revealed that SD + SiNPs disrupted circadian locomotor activity and body temperature rhythms. Phenotypic assessments showed reduced tear secretion and ELG atrophy. RNA sequencing identified extensive transcriptomic reprogramming, including altered expression of core clock genes and enrichment of inflammatory and redox-related pathways. Increased reactive oxygen species (ROS) accumulation and γ-H2AX expression indicated oxidative DNA damage. Immunohistochemistry confirmed NLRP3 inflammasome activation, while Western blotting revealed enhanced phosphorylation of JAK2, STAT3, NF-κB p65, and IκBα, alongside upregulation of IL-17A. Elevated malondialdehyde levels further reflected oxidative lipid damage. These findings demonstrate that SD exacerbates SiNPs-induced ELG dysfunction via circadian disruption and activation of the ROS/NLRP3/IL-17A inflammatory axis. While these effects are currently limited to the lacrimal gland, future studies are needed to determine whether similar mechanisms contribute to broader systemic metabolic consequences.</p>\",\"PeriodicalId\":16383,\"journal\":{\"name\":\"Journal of Nanobiotechnology\",\"volume\":\"23 1\",\"pages\":\"600\"},\"PeriodicalIF\":12.6000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12403269/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12951-025-03630-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03630-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Circadian disruption and ROS-NLRP3 signaling mediate sleep deprivation-enhanced silica nanoparticle toxicity in lacrimal glands.
Sleep deprivation (SD) and exposure to engineered nanomaterials such as silica nanoparticles (SiNPs) are emerging risk factors for ocular surface disorders, particularly dry eye disease. However, the molecular mechanisms underlying their combined impact on lacrimal gland function remain unclear. In this study, we investigated the synergistic effects of SD and SiNPs exposure on circadian regulation, oxidative stress, inflammation, and structural integrity of the extraorbital lacrimal glands (ELGs) in C57BL/6J mice. Behavioral and physiological monitoring revealed that SD + SiNPs disrupted circadian locomotor activity and body temperature rhythms. Phenotypic assessments showed reduced tear secretion and ELG atrophy. RNA sequencing identified extensive transcriptomic reprogramming, including altered expression of core clock genes and enrichment of inflammatory and redox-related pathways. Increased reactive oxygen species (ROS) accumulation and γ-H2AX expression indicated oxidative DNA damage. Immunohistochemistry confirmed NLRP3 inflammasome activation, while Western blotting revealed enhanced phosphorylation of JAK2, STAT3, NF-κB p65, and IκBα, alongside upregulation of IL-17A. Elevated malondialdehyde levels further reflected oxidative lipid damage. These findings demonstrate that SD exacerbates SiNPs-induced ELG dysfunction via circadian disruption and activation of the ROS/NLRP3/IL-17A inflammatory axis. While these effects are currently limited to the lacrimal gland, future studies are needed to determine whether similar mechanisms contribute to broader systemic metabolic consequences.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.