T2 mri引导下治疗再灌注损伤的缺陷工程无定形纳米拦截剂。

IF 12.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Xiaotong Ma, Xin Liang, Yixin Yu, Hao Guan, Xuejiao Gao, Jing Li, Shanyue Guan, Aihua Liu, Li Yao, Kelong Fan
{"title":"T2 mri引导下治疗再灌注损伤的缺陷工程无定形纳米拦截剂。","authors":"Xiaotong Ma, Xin Liang, Yixin Yu, Hao Guan, Xuejiao Gao, Jing Li, Shanyue Guan, Aihua Liu, Li Yao, Kelong Fan","doi":"10.1186/s12951-025-03624-3","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemic reperfusion (I/R) injury is dominated by excessive reactive oxygen species (ROS)-mediated oxidative damage and uncontrolled inflammation, yet effective strategies for simultaneous diagnosis and treatment remain elusive. Herein, we report a defect-engineered amorphous-like MnCeO<sub>x</sub> nanointerceptor with dual capabilities of magnetic resonance imaging (MRI) -guided stroke diagnosis and ROS-scavenging therapy. The synergistic effect of the amorphous-like structure and Mn-Ce solid solution induces abundant oxygen vacancies and a disordered surface, significantly boosting ROS catalytic removal. Theoretical calculations confirm that Mn doping and oxygen vacancy formation modulate the electronic structure, reduce the adsorption energy of ROS intermediates, and lower catalytic energy barriers, thereby enhancing enzyme-like activity. As a result, MnCeO<sub>x</sub> exhibits an exceptionally high superoxide radical scavenging efficiency (115-fold higher than CeO<sub>x</sub>) and superior MRI contrast (r<sub>2</sub> = 139 mM⁻¹) for precise lesion localization. In vivo, MnCeO<sub>x</sub> efficiently alleviates ROS-mediated oxidative stress and neuroinflammation, promoting substantial recovery from I/R injury. This work offers a powerful defect-engineering strategy for developing next-generation diagnostic and therapeutic nanozymes.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"596"},"PeriodicalIF":12.6000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12398121/pdf/","citationCount":"0","resultStr":"{\"title\":\"Defect-engineered amorphous-like nanointerceptors for T<sub>2</sub> MRI-Guided treatment of reperfusion injury.\",\"authors\":\"Xiaotong Ma, Xin Liang, Yixin Yu, Hao Guan, Xuejiao Gao, Jing Li, Shanyue Guan, Aihua Liu, Li Yao, Kelong Fan\",\"doi\":\"10.1186/s12951-025-03624-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ischemic reperfusion (I/R) injury is dominated by excessive reactive oxygen species (ROS)-mediated oxidative damage and uncontrolled inflammation, yet effective strategies for simultaneous diagnosis and treatment remain elusive. Herein, we report a defect-engineered amorphous-like MnCeO<sub>x</sub> nanointerceptor with dual capabilities of magnetic resonance imaging (MRI) -guided stroke diagnosis and ROS-scavenging therapy. The synergistic effect of the amorphous-like structure and Mn-Ce solid solution induces abundant oxygen vacancies and a disordered surface, significantly boosting ROS catalytic removal. Theoretical calculations confirm that Mn doping and oxygen vacancy formation modulate the electronic structure, reduce the adsorption energy of ROS intermediates, and lower catalytic energy barriers, thereby enhancing enzyme-like activity. As a result, MnCeO<sub>x</sub> exhibits an exceptionally high superoxide radical scavenging efficiency (115-fold higher than CeO<sub>x</sub>) and superior MRI contrast (r<sub>2</sub> = 139 mM⁻¹) for precise lesion localization. In vivo, MnCeO<sub>x</sub> efficiently alleviates ROS-mediated oxidative stress and neuroinflammation, promoting substantial recovery from I/R injury. This work offers a powerful defect-engineering strategy for developing next-generation diagnostic and therapeutic nanozymes.</p>\",\"PeriodicalId\":16383,\"journal\":{\"name\":\"Journal of Nanobiotechnology\",\"volume\":\"23 1\",\"pages\":\"596\"},\"PeriodicalIF\":12.6000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12398121/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12951-025-03624-3\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03624-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

缺血再灌注(I/R)损伤主要是活性氧(ROS)介导的氧化损伤和不受控制的炎症,但有效的诊断和治疗策略尚不明确。在此,我们报道了一种缺陷工程的非晶状MnCeOx纳米拦截剂,具有磁共振成像(MRI)引导的中风诊断和ros清除治疗的双重能力。非晶状结构和Mn-Ce固溶体的协同作用导致了丰富的氧空位和无序的表面,显著促进了ROS的催化去除。理论计算证实,Mn掺杂和氧空位形成调节了电子结构,降低了ROS中间体的吸附能,降低了催化能垒,从而增强了类酶活性。因此,MnCeOx表现出异常高的超氧自由基清除效率(比CeOx高115倍)和优越的MRI对比(r2 = 139 mM⁻¹),可以精确定位病变。在体内,MnCeOx有效缓解ros介导的氧化应激和神经炎症,促进I/R损伤的实质性恢复。这项工作为开发下一代诊断和治疗纳米酶提供了强有力的缺陷工程策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Defect-engineered amorphous-like nanointerceptors for T2 MRI-Guided treatment of reperfusion injury.

Ischemic reperfusion (I/R) injury is dominated by excessive reactive oxygen species (ROS)-mediated oxidative damage and uncontrolled inflammation, yet effective strategies for simultaneous diagnosis and treatment remain elusive. Herein, we report a defect-engineered amorphous-like MnCeOx nanointerceptor with dual capabilities of magnetic resonance imaging (MRI) -guided stroke diagnosis and ROS-scavenging therapy. The synergistic effect of the amorphous-like structure and Mn-Ce solid solution induces abundant oxygen vacancies and a disordered surface, significantly boosting ROS catalytic removal. Theoretical calculations confirm that Mn doping and oxygen vacancy formation modulate the electronic structure, reduce the adsorption energy of ROS intermediates, and lower catalytic energy barriers, thereby enhancing enzyme-like activity. As a result, MnCeOx exhibits an exceptionally high superoxide radical scavenging efficiency (115-fold higher than CeOx) and superior MRI contrast (r2 = 139 mM⁻¹) for precise lesion localization. In vivo, MnCeOx efficiently alleviates ROS-mediated oxidative stress and neuroinflammation, promoting substantial recovery from I/R injury. This work offers a powerful defect-engineering strategy for developing next-generation diagnostic and therapeutic nanozymes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信