Jin Won Choi, Chaesun Kwon, Jin Woo Lee, Jae-Seoun Hur, Min-Kyoo Shin, Sang Hee Shim
{"title":"抗帕金森氏4-羟基-2-吡啶酮从内生真菌,polypocladium sp.(菌株CNC14)。","authors":"Jin Won Choi, Chaesun Kwon, Jin Woo Lee, Jae-Seoun Hur, Min-Kyoo Shin, Sang Hee Shim","doi":"10.1093/jimb/kuaf027","DOIUrl":null,"url":null,"abstract":"<p><p>4-Hydroxy-2-pyridone alkaloids have attracted considerable attention because of their intriguing structures and diverse bioactivities. In our previous study, 4-hydroxy-2-pyridone alkaloids were shown to exhibit potent activity against neuron-associated targets. To discover this class of neuroactive compounds, an array of endolichenic fungal extracts was screened by analyzing liquid chromatography-ultraviolet-mass spectrometry (LC-UV-MS) profiles. The screening yielded strain Tolypocladium sp. (strain CNC14), which produced compounds with characteristic Ultraviolet patterns for 4-hydroxy-2-pyridone alkaloids using our in-house library. Based on these findings, we conducted a chemical investigation, which led to the isolation of four new (1-4) and ten known (5-14) compounds. Their structures were elucidated via spectroscopic methods such as nuclear magnetic resonance and mass spectrometry. The stereochemistry of the new compounds (1-4) was established using rotating frame overhauser effect spectroscopy (ROESY), and the electronic circular dichrosim (ECD) was compared with the calculated data. Interestingly, the side chains of 4-hydroxy-2-pyridone in 1 and 2 were cyclized in different directions to form benzopyrano[3,4-b]pyridinol from previously reported compounds, and all the new compounds were predicted to be biosynthesized from reduced tolypyridone C (7) via the hetero-Diels-Alder reaction. Among the isolated compounds, 4 significantly protected neuronal cells against treatment with 1-methyl-4-phenylpyridinium (MPP+), a Parkinsonian neurotoxin, in an in vitro Parkinson's disease model. One-Sentence Summary: Four new neuroprotective 4-hydroxy-2-pyridone alkaloids were discovered from an endolichenic fungus Tolypocladium sp.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12455187/pdf/","citationCount":"0","resultStr":"{\"title\":\"Anti-Parkinsonian 4-hydroxy-2-pyridones from an endolichenic fungus, Tolypocladium sp. (strain CNC14).\",\"authors\":\"Jin Won Choi, Chaesun Kwon, Jin Woo Lee, Jae-Seoun Hur, Min-Kyoo Shin, Sang Hee Shim\",\"doi\":\"10.1093/jimb/kuaf027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>4-Hydroxy-2-pyridone alkaloids have attracted considerable attention because of their intriguing structures and diverse bioactivities. In our previous study, 4-hydroxy-2-pyridone alkaloids were shown to exhibit potent activity against neuron-associated targets. To discover this class of neuroactive compounds, an array of endolichenic fungal extracts was screened by analyzing liquid chromatography-ultraviolet-mass spectrometry (LC-UV-MS) profiles. The screening yielded strain Tolypocladium sp. (strain CNC14), which produced compounds with characteristic Ultraviolet patterns for 4-hydroxy-2-pyridone alkaloids using our in-house library. Based on these findings, we conducted a chemical investigation, which led to the isolation of four new (1-4) and ten known (5-14) compounds. Their structures were elucidated via spectroscopic methods such as nuclear magnetic resonance and mass spectrometry. The stereochemistry of the new compounds (1-4) was established using rotating frame overhauser effect spectroscopy (ROESY), and the electronic circular dichrosim (ECD) was compared with the calculated data. Interestingly, the side chains of 4-hydroxy-2-pyridone in 1 and 2 were cyclized in different directions to form benzopyrano[3,4-b]pyridinol from previously reported compounds, and all the new compounds were predicted to be biosynthesized from reduced tolypyridone C (7) via the hetero-Diels-Alder reaction. Among the isolated compounds, 4 significantly protected neuronal cells against treatment with 1-methyl-4-phenylpyridinium (MPP+), a Parkinsonian neurotoxin, in an in vitro Parkinson's disease model. One-Sentence Summary: Four new neuroprotective 4-hydroxy-2-pyridone alkaloids were discovered from an endolichenic fungus Tolypocladium sp.</p>\",\"PeriodicalId\":16092,\"journal\":{\"name\":\"Journal of Industrial Microbiology & Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12455187/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Microbiology & Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jimb/kuaf027\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Microbiology & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jimb/kuaf027","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Anti-Parkinsonian 4-hydroxy-2-pyridones from an endolichenic fungus, Tolypocladium sp. (strain CNC14).
4-Hydroxy-2-pyridone alkaloids have attracted considerable attention because of their intriguing structures and diverse bioactivities. In our previous study, 4-hydroxy-2-pyridone alkaloids were shown to exhibit potent activity against neuron-associated targets. To discover this class of neuroactive compounds, an array of endolichenic fungal extracts was screened by analyzing liquid chromatography-ultraviolet-mass spectrometry (LC-UV-MS) profiles. The screening yielded strain Tolypocladium sp. (strain CNC14), which produced compounds with characteristic Ultraviolet patterns for 4-hydroxy-2-pyridone alkaloids using our in-house library. Based on these findings, we conducted a chemical investigation, which led to the isolation of four new (1-4) and ten known (5-14) compounds. Their structures were elucidated via spectroscopic methods such as nuclear magnetic resonance and mass spectrometry. The stereochemistry of the new compounds (1-4) was established using rotating frame overhauser effect spectroscopy (ROESY), and the electronic circular dichrosim (ECD) was compared with the calculated data. Interestingly, the side chains of 4-hydroxy-2-pyridone in 1 and 2 were cyclized in different directions to form benzopyrano[3,4-b]pyridinol from previously reported compounds, and all the new compounds were predicted to be biosynthesized from reduced tolypyridone C (7) via the hetero-Diels-Alder reaction. Among the isolated compounds, 4 significantly protected neuronal cells against treatment with 1-methyl-4-phenylpyridinium (MPP+), a Parkinsonian neurotoxin, in an in vitro Parkinson's disease model. One-Sentence Summary: Four new neuroprotective 4-hydroxy-2-pyridone alkaloids were discovered from an endolichenic fungus Tolypocladium sp.
期刊介绍:
The Journal of Industrial Microbiology and Biotechnology is an international journal which publishes papers describing original research, short communications, and critical reviews in the fields of biotechnology, fermentation and cell culture, biocatalysis, environmental microbiology, natural products discovery and biosynthesis, marine natural products, metabolic engineering, genomics, bioinformatics, food microbiology, and other areas of applied microbiology