Dong-Mei Liu, Shi-Hui Wang, Ke Wang, Jia-Xin Li, Wen-Qiang Yang, Xi-Xi Han, Bin Cao, Shuang-Hui He, Wei-Wei Liu, Rui-Lin Zhao
{"title":"北京大型真菌物种多样性及资源现状:来自自然生境和城市生境的启示","authors":"Dong-Mei Liu, Shi-Hui Wang, Ke Wang, Jia-Xin Li, Wen-Qiang Yang, Xi-Xi Han, Bin Cao, Shuang-Hui He, Wei-Wei Liu, Rui-Lin Zhao","doi":"10.3390/jof11080607","DOIUrl":null,"url":null,"abstract":"<p><p>This study systematically documented macrofungal diversity in Beijing, China (field surveys conducted from 2020 to 2024) using line-transect and random sampling. A total of 1056 species were identified, spanning 2 phyla, 7 classes, 25 orders, 109 families, and 286 genera. The inventory includes 12 new species, 456 new records for Beijing, 79 new records for China, and comprises 116 edible, 56 edible-medicinal, 123 medicinal, and 58 poisonous species. Among these, 542 species were assessed against China's Macrofungi Redlist, revealing eight species needing conservation attention (seven Near Threatened, one Vulnerable). Analysis revealed stark differences in dominant taxa between natural ecosystems (protected areas) and urban green spaces/parks. In natural areas, macrofungi are dominated by 31 families (e.g., Russulaceae, Cortinariaceae) and 47 genera (e.g., <i>Russula</i>, <i>Cortinarius</i>). Ectomycorrhizal lineages prevailed, highlighting their critical role in forest nutrient cycling, plant symbiosis, and ecosystem integrity. In urban areas, 10 families (e.g., Agaricaceae, Psathyrellaceae) and 17 genera (e.g., <i>Leucocoprinus</i>, <i>Coprinellus</i>) were dominant. Saprotrophic genera dominated, indicating their adaptation to decomposing organic matter in human-modified habitats and the provision of ecosystem services. The study demonstrates relatively high macrofungal diversity in Beijing. The distinct functional guild composition-ectomycorrhizal dominance in natural areas versus saprotrophic prevalence in urban zones-reveals complementary ecosystem functions and underscores the conservation value of protected habitats for maintaining vital mycorrhizal networks. These findings provide fundamental data and scientific support for regional biodiversity conservation and sustainable macrofungal resource development.</p>","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"11 8","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387404/pdf/","citationCount":"0","resultStr":"{\"title\":\"Species Diversity and Resource Status of Macrofungi in Beijing: Insights from Natural and Urban Habitats.\",\"authors\":\"Dong-Mei Liu, Shi-Hui Wang, Ke Wang, Jia-Xin Li, Wen-Qiang Yang, Xi-Xi Han, Bin Cao, Shuang-Hui He, Wei-Wei Liu, Rui-Lin Zhao\",\"doi\":\"10.3390/jof11080607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study systematically documented macrofungal diversity in Beijing, China (field surveys conducted from 2020 to 2024) using line-transect and random sampling. A total of 1056 species were identified, spanning 2 phyla, 7 classes, 25 orders, 109 families, and 286 genera. The inventory includes 12 new species, 456 new records for Beijing, 79 new records for China, and comprises 116 edible, 56 edible-medicinal, 123 medicinal, and 58 poisonous species. Among these, 542 species were assessed against China's Macrofungi Redlist, revealing eight species needing conservation attention (seven Near Threatened, one Vulnerable). Analysis revealed stark differences in dominant taxa between natural ecosystems (protected areas) and urban green spaces/parks. In natural areas, macrofungi are dominated by 31 families (e.g., Russulaceae, Cortinariaceae) and 47 genera (e.g., <i>Russula</i>, <i>Cortinarius</i>). Ectomycorrhizal lineages prevailed, highlighting their critical role in forest nutrient cycling, plant symbiosis, and ecosystem integrity. In urban areas, 10 families (e.g., Agaricaceae, Psathyrellaceae) and 17 genera (e.g., <i>Leucocoprinus</i>, <i>Coprinellus</i>) were dominant. Saprotrophic genera dominated, indicating their adaptation to decomposing organic matter in human-modified habitats and the provision of ecosystem services. The study demonstrates relatively high macrofungal diversity in Beijing. The distinct functional guild composition-ectomycorrhizal dominance in natural areas versus saprotrophic prevalence in urban zones-reveals complementary ecosystem functions and underscores the conservation value of protected habitats for maintaining vital mycorrhizal networks. These findings provide fundamental data and scientific support for regional biodiversity conservation and sustainable macrofungal resource development.</p>\",\"PeriodicalId\":15878,\"journal\":{\"name\":\"Journal of Fungi\",\"volume\":\"11 8\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387404/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fungi\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/jof11080607\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fungi","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/jof11080607","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Species Diversity and Resource Status of Macrofungi in Beijing: Insights from Natural and Urban Habitats.
This study systematically documented macrofungal diversity in Beijing, China (field surveys conducted from 2020 to 2024) using line-transect and random sampling. A total of 1056 species were identified, spanning 2 phyla, 7 classes, 25 orders, 109 families, and 286 genera. The inventory includes 12 new species, 456 new records for Beijing, 79 new records for China, and comprises 116 edible, 56 edible-medicinal, 123 medicinal, and 58 poisonous species. Among these, 542 species were assessed against China's Macrofungi Redlist, revealing eight species needing conservation attention (seven Near Threatened, one Vulnerable). Analysis revealed stark differences in dominant taxa between natural ecosystems (protected areas) and urban green spaces/parks. In natural areas, macrofungi are dominated by 31 families (e.g., Russulaceae, Cortinariaceae) and 47 genera (e.g., Russula, Cortinarius). Ectomycorrhizal lineages prevailed, highlighting their critical role in forest nutrient cycling, plant symbiosis, and ecosystem integrity. In urban areas, 10 families (e.g., Agaricaceae, Psathyrellaceae) and 17 genera (e.g., Leucocoprinus, Coprinellus) were dominant. Saprotrophic genera dominated, indicating their adaptation to decomposing organic matter in human-modified habitats and the provision of ecosystem services. The study demonstrates relatively high macrofungal diversity in Beijing. The distinct functional guild composition-ectomycorrhizal dominance in natural areas versus saprotrophic prevalence in urban zones-reveals complementary ecosystem functions and underscores the conservation value of protected habitats for maintaining vital mycorrhizal networks. These findings provide fundamental data and scientific support for regional biodiversity conservation and sustainable macrofungal resource development.
期刊介绍:
Journal of Fungi (ISSN 2309-608X) is an international, peer-reviewed scientific open access journal that provides an advanced forum for studies related to pathogenic fungi, fungal biology, and all other aspects of fungal research. The journal publishes reviews, regular research papers, and communications in quarterly issues. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on paper length. Full experimental details must be provided so that the results can be reproduced.