{"title":"JA信号抑制因子JAZ参与AM与木薯共生,包括共生建立和木薯生长的调控。","authors":"Yu Gao, Siyuan Huang, Jingling Zhang, Lin Zhu, Baocan Zhan, Xiaohui Yu, Yinhua Chen","doi":"10.3390/jof11080601","DOIUrl":null,"url":null,"abstract":"<p><p>Mutualism between plants and arbuscular mycorrhizal fungi (AMF) is imperative for sustainable agricultural production. Jasmonic acid (JA) signal transduction has been demonstrated to play an important role in AMF symbiosis with the host. In this study, SC9 cassava was selected as the research object to investigate the effect of the jasmonic acid signaling pathway on symbiosis establishment and cassava growth in AMF and cassava symbiosis. It was first found that the symbiosis of cassava and mycorrhizal fungi could increase the biomass of both the aboveground and belowground parts of cassava. Secondly, JA content increased significantly in the early stage of AMF inoculation and auxin content increased significantly in the late stage of AMF inoculation, suggesting that JA signal transduction played an important role in the symbiosis between cassava and mycorrhizal fungi. Transcriptome data were used to analyze the expression differences of genes related to JA synthesis and signal transduction in cassava. The <i>MeJAZ</i> gene positively responded to symbiosis between cassava and mycorrhizal fungi. The analysis of MeJAZ gene family expression and its promoter supported this result. Spraying different concentrations of MeJA on leaves could affect the colonization rate and root biomass of cassava, indicating that JA was an active regulator of mycorrhizal formation. PPI prediction and qPCR analysis suggested that the <i>MeJAZ7</i> gene might be a key transcriptional regulator responding to jasmonic acid signals and regulating mycorrhizal influence on cassava growth and development.</p>","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"11 8","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387459/pdf/","citationCount":"0","resultStr":"{\"title\":\"JA Signaling Inhibitor JAZ Is Involved in Regulation of AM Symbiosis with Cassava, Including Symbiosis Establishment and Cassava Growth.\",\"authors\":\"Yu Gao, Siyuan Huang, Jingling Zhang, Lin Zhu, Baocan Zhan, Xiaohui Yu, Yinhua Chen\",\"doi\":\"10.3390/jof11080601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mutualism between plants and arbuscular mycorrhizal fungi (AMF) is imperative for sustainable agricultural production. Jasmonic acid (JA) signal transduction has been demonstrated to play an important role in AMF symbiosis with the host. In this study, SC9 cassava was selected as the research object to investigate the effect of the jasmonic acid signaling pathway on symbiosis establishment and cassava growth in AMF and cassava symbiosis. It was first found that the symbiosis of cassava and mycorrhizal fungi could increase the biomass of both the aboveground and belowground parts of cassava. Secondly, JA content increased significantly in the early stage of AMF inoculation and auxin content increased significantly in the late stage of AMF inoculation, suggesting that JA signal transduction played an important role in the symbiosis between cassava and mycorrhizal fungi. Transcriptome data were used to analyze the expression differences of genes related to JA synthesis and signal transduction in cassava. The <i>MeJAZ</i> gene positively responded to symbiosis between cassava and mycorrhizal fungi. The analysis of MeJAZ gene family expression and its promoter supported this result. Spraying different concentrations of MeJA on leaves could affect the colonization rate and root biomass of cassava, indicating that JA was an active regulator of mycorrhizal formation. PPI prediction and qPCR analysis suggested that the <i>MeJAZ7</i> gene might be a key transcriptional regulator responding to jasmonic acid signals and regulating mycorrhizal influence on cassava growth and development.</p>\",\"PeriodicalId\":15878,\"journal\":{\"name\":\"Journal of Fungi\",\"volume\":\"11 8\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387459/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fungi\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/jof11080601\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fungi","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/jof11080601","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
JA Signaling Inhibitor JAZ Is Involved in Regulation of AM Symbiosis with Cassava, Including Symbiosis Establishment and Cassava Growth.
Mutualism between plants and arbuscular mycorrhizal fungi (AMF) is imperative for sustainable agricultural production. Jasmonic acid (JA) signal transduction has been demonstrated to play an important role in AMF symbiosis with the host. In this study, SC9 cassava was selected as the research object to investigate the effect of the jasmonic acid signaling pathway on symbiosis establishment and cassava growth in AMF and cassava symbiosis. It was first found that the symbiosis of cassava and mycorrhizal fungi could increase the biomass of both the aboveground and belowground parts of cassava. Secondly, JA content increased significantly in the early stage of AMF inoculation and auxin content increased significantly in the late stage of AMF inoculation, suggesting that JA signal transduction played an important role in the symbiosis between cassava and mycorrhizal fungi. Transcriptome data were used to analyze the expression differences of genes related to JA synthesis and signal transduction in cassava. The MeJAZ gene positively responded to symbiosis between cassava and mycorrhizal fungi. The analysis of MeJAZ gene family expression and its promoter supported this result. Spraying different concentrations of MeJA on leaves could affect the colonization rate and root biomass of cassava, indicating that JA was an active regulator of mycorrhizal formation. PPI prediction and qPCR analysis suggested that the MeJAZ7 gene might be a key transcriptional regulator responding to jasmonic acid signals and regulating mycorrhizal influence on cassava growth and development.
期刊介绍:
Journal of Fungi (ISSN 2309-608X) is an international, peer-reviewed scientific open access journal that provides an advanced forum for studies related to pathogenic fungi, fungal biology, and all other aspects of fungal research. The journal publishes reviews, regular research papers, and communications in quarterly issues. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on paper length. Full experimental details must be provided so that the results can be reproduced.