支架的组织学加工:挑战和解决方案。

IF 5.2 3区 医学 Q1 ENGINEERING, BIOMEDICAL
Tomas Ragauskas, Ilona Uzieliene, Eiva Bernotiene
{"title":"支架的组织学加工:挑战和解决方案。","authors":"Tomas Ragauskas, Ilona Uzieliene, Eiva Bernotiene","doi":"10.3390/jfb16080279","DOIUrl":null,"url":null,"abstract":"<p><p>Scaffolds are widely used in bioengineering, both as 3D native tissue-mimicking models for investigating mechanisms under physiological and pathological conditions and also as implantable agents in regenerative medicine. Histological approaches, mainly formalin-fixed paraffin-embedded (FFPE) and frozen sample sectioning, are commonly applied to evaluate cell distribution and tissue-like properties of scaffolds. However, standard histological processing is not always compatible with the materials that scaffolds are made of. Thus, some adaptations to protocols are required to obtain intact sections. In this review we discuss challenges related to the histological processing of scaffolds and solutions to overcome them. We sequentially cover processing steps of the three main histological techniques for sample preparation-cryomicrotomy, FFPE samples microtomy and vibrating microtomy. Furthermore, we highlight the critical considerations in choosing the most appropriate method based on scaffold composition, mechanical properties and the specific research question. The goal of this review is to provide practical guidance on choosing reliable histological evaluation of complex scaffold-based systems in tissue engineering research.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 8","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387496/pdf/","citationCount":"0","resultStr":"{\"title\":\"Histological Processing of Scaffolds: Challenges and Solutions.\",\"authors\":\"Tomas Ragauskas, Ilona Uzieliene, Eiva Bernotiene\",\"doi\":\"10.3390/jfb16080279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Scaffolds are widely used in bioengineering, both as 3D native tissue-mimicking models for investigating mechanisms under physiological and pathological conditions and also as implantable agents in regenerative medicine. Histological approaches, mainly formalin-fixed paraffin-embedded (FFPE) and frozen sample sectioning, are commonly applied to evaluate cell distribution and tissue-like properties of scaffolds. However, standard histological processing is not always compatible with the materials that scaffolds are made of. Thus, some adaptations to protocols are required to obtain intact sections. In this review we discuss challenges related to the histological processing of scaffolds and solutions to overcome them. We sequentially cover processing steps of the three main histological techniques for sample preparation-cryomicrotomy, FFPE samples microtomy and vibrating microtomy. Furthermore, we highlight the critical considerations in choosing the most appropriate method based on scaffold composition, mechanical properties and the specific research question. The goal of this review is to provide practical guidance on choosing reliable histological evaluation of complex scaffold-based systems in tissue engineering research.</p>\",\"PeriodicalId\":15767,\"journal\":{\"name\":\"Journal of Functional Biomaterials\",\"volume\":\"16 8\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387496/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/jfb16080279\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16080279","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

支架在生物工程中有着广泛的应用,既可以作为研究生理和病理条件下机制的三维天然组织模拟模型,也可以作为再生医学中的植入式药物。组织学方法主要是福尔马林固定石蜡包埋(FFPE)和冷冻样品切片,通常用于评估支架的细胞分布和组织样特性。然而,标准的组织学处理并不总是与制造支架的材料相容。因此,需要对协议进行一些调整以获得完整的切片。在这篇综述中,我们讨论了与支架的组织学处理相关的挑战和克服这些挑战的解决方案。我们依次介绍了样品制备的三种主要组织学技术的处理步骤-冷冻切片,FFPE样品切片和振动切片。此外,我们强调了根据支架组成,机械性能和具体研究问题选择最合适方法的关键考虑因素。本综述的目的是为组织工程研究中复杂支架系统选择可靠的组织学评估提供实用指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Histological Processing of Scaffolds: Challenges and Solutions.

Histological Processing of Scaffolds: Challenges and Solutions.

Histological Processing of Scaffolds: Challenges and Solutions.

Scaffolds are widely used in bioengineering, both as 3D native tissue-mimicking models for investigating mechanisms under physiological and pathological conditions and also as implantable agents in regenerative medicine. Histological approaches, mainly formalin-fixed paraffin-embedded (FFPE) and frozen sample sectioning, are commonly applied to evaluate cell distribution and tissue-like properties of scaffolds. However, standard histological processing is not always compatible with the materials that scaffolds are made of. Thus, some adaptations to protocols are required to obtain intact sections. In this review we discuss challenges related to the histological processing of scaffolds and solutions to overcome them. We sequentially cover processing steps of the three main histological techniques for sample preparation-cryomicrotomy, FFPE samples microtomy and vibrating microtomy. Furthermore, we highlight the critical considerations in choosing the most appropriate method based on scaffold composition, mechanical properties and the specific research question. The goal of this review is to provide practical guidance on choosing reliable histological evaluation of complex scaffold-based systems in tissue engineering research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Functional Biomaterials
Journal of Functional Biomaterials Engineering-Biomedical Engineering
CiteScore
4.60
自引率
4.20%
发文量
226
审稿时长
11 weeks
期刊介绍: Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信