Konstantine V Nadaraia, Anastasia A Golysheva, Evgeniy A Belov, Dmitry A Lyapin, Mariia S Gerasimenko, Maria A Nadaraia, Arina I Pleshkova, Igor M Imshinetskiy, Oleg O Shichalin, Anton A Belov, Eugeniy K Papynov, Sergey S Atarshchikov, Dmitry V Mashtalyar
{"title":"火花烧结制备多孔镁结构生物相容性杂化表面层。","authors":"Konstantine V Nadaraia, Anastasia A Golysheva, Evgeniy A Belov, Dmitry A Lyapin, Mariia S Gerasimenko, Maria A Nadaraia, Arina I Pleshkova, Igor M Imshinetskiy, Oleg O Shichalin, Anton A Belov, Eugeniy K Papynov, Sergey S Atarshchikov, Dmitry V Mashtalyar","doi":"10.3390/jfb16080269","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, 3D Mg scaffolds were obtained by the spark plasma sintering (SPS), and a calcium phosphate coating was then obtained on the samples by the plasma electrolytic oxidation. A hybrid coating with vancomycin, zoledronic acid, and menaquinone MK-7 was formed to improve biocompatibility. The mechanical properties of the formed specimens were studied. According to XRD, XRF, SEM, EDS, and OSP studies obtained scaffolds have developed morphology and contain hydroxyapatite as well as bioactive substances. Formation of coatings improves the wettability of samples (contact angle decreases from 123.8 ± 3.1° to 26.9 ± 4.1°) and increases the surface roughness by more than 3 times. This makes them promising for use as a new generation of implantation materials. The results are important for the development of personalized implants with improved functional characteristics.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 8","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387148/pdf/","citationCount":"0","resultStr":"{\"title\":\"Biocompatible Hybrid Surface Layers on Porous Magnesium Structures Fabricated by Spark Sintering.\",\"authors\":\"Konstantine V Nadaraia, Anastasia A Golysheva, Evgeniy A Belov, Dmitry A Lyapin, Mariia S Gerasimenko, Maria A Nadaraia, Arina I Pleshkova, Igor M Imshinetskiy, Oleg O Shichalin, Anton A Belov, Eugeniy K Papynov, Sergey S Atarshchikov, Dmitry V Mashtalyar\",\"doi\":\"10.3390/jfb16080269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, 3D Mg scaffolds were obtained by the spark plasma sintering (SPS), and a calcium phosphate coating was then obtained on the samples by the plasma electrolytic oxidation. A hybrid coating with vancomycin, zoledronic acid, and menaquinone MK-7 was formed to improve biocompatibility. The mechanical properties of the formed specimens were studied. According to XRD, XRF, SEM, EDS, and OSP studies obtained scaffolds have developed morphology and contain hydroxyapatite as well as bioactive substances. Formation of coatings improves the wettability of samples (contact angle decreases from 123.8 ± 3.1° to 26.9 ± 4.1°) and increases the surface roughness by more than 3 times. This makes them promising for use as a new generation of implantation materials. The results are important for the development of personalized implants with improved functional characteristics.</p>\",\"PeriodicalId\":15767,\"journal\":{\"name\":\"Journal of Functional Biomaterials\",\"volume\":\"16 8\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387148/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/jfb16080269\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16080269","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Biocompatible Hybrid Surface Layers on Porous Magnesium Structures Fabricated by Spark Sintering.
In this study, 3D Mg scaffolds were obtained by the spark plasma sintering (SPS), and a calcium phosphate coating was then obtained on the samples by the plasma electrolytic oxidation. A hybrid coating with vancomycin, zoledronic acid, and menaquinone MK-7 was formed to improve biocompatibility. The mechanical properties of the formed specimens were studied. According to XRD, XRF, SEM, EDS, and OSP studies obtained scaffolds have developed morphology and contain hydroxyapatite as well as bioactive substances. Formation of coatings improves the wettability of samples (contact angle decreases from 123.8 ± 3.1° to 26.9 ± 4.1°) and increases the surface roughness by more than 3 times. This makes them promising for use as a new generation of implantation materials. The results are important for the development of personalized implants with improved functional characteristics.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.