{"title":"第五代和第七代粘接剂对I类复合修复体边缘密封的体外比较评价。","authors":"Serban Talpos Niculescu, Ioana Veja, George-Dumitru Constantin, Ioana Elena Lile, Christos Armeniakos, Ioana Roxana Munteanu, Tareq Hajaj","doi":"10.3390/jfb16080301","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>A major challenge in adhesive dentistry, often leading to restoration failure, is microleakage. This in vitro comparative study was designed to assess microleakage at the tooth-composite interface. The investigation aimed to compare the sealing efficacy of two commonly used adhesive systems.</p><p><strong>Methods: </strong>Standardized Class I cavities were prepared on 20 extracted human molars and randomly divided into two groups (n = 10 each). Group A was treated with a fifth-generation total-etch adhesive (OptiBond™ Solo Plus, Kerr Corporation, Orange, CA, USA), and Group B received a seventh-generation self-etch adhesive (Adhese® Universal VivaPen®, Ivoclar Vivadent AG, Schaan, Liechtenstein). All restorations were completed using Herculite XRV composite resin. Microleakage was evaluated using dye penetration analysis after immersion in 2% methylene blue for 10 days, followed by longitudinal sectioning and microscopic measurement at 500× magnification.</p><p><strong>Results: </strong>The fifth-generation adhesive group showed a mean microleakage of 0.2503 ± 0.1921 mm, while the seventh-generation group recorded 0.2484 ± 0.1764 mm. Statistical analysis using an independent t-test revealed no significant difference between the groups (<i>p</i> = 0.696).</p><p><strong>Conclusions: </strong>Both adhesive systems demonstrated comparable performance in minimizing microleakage under standardized conditions. Although the total-etch group exhibited slightly lower numerical values, the difference was not statistically significant. These findings suggest that both adhesive approaches can be clinically effective when applied appropriately.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 8","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387737/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparative in Vitro Evaluation of Marginal Sealing in Class I Composite Restorations Using Fifth- and Seventh-Generation Adhesives.\",\"authors\":\"Serban Talpos Niculescu, Ioana Veja, George-Dumitru Constantin, Ioana Elena Lile, Christos Armeniakos, Ioana Roxana Munteanu, Tareq Hajaj\",\"doi\":\"10.3390/jfb16080301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>A major challenge in adhesive dentistry, often leading to restoration failure, is microleakage. This in vitro comparative study was designed to assess microleakage at the tooth-composite interface. The investigation aimed to compare the sealing efficacy of two commonly used adhesive systems.</p><p><strong>Methods: </strong>Standardized Class I cavities were prepared on 20 extracted human molars and randomly divided into two groups (n = 10 each). Group A was treated with a fifth-generation total-etch adhesive (OptiBond™ Solo Plus, Kerr Corporation, Orange, CA, USA), and Group B received a seventh-generation self-etch adhesive (Adhese® Universal VivaPen®, Ivoclar Vivadent AG, Schaan, Liechtenstein). All restorations were completed using Herculite XRV composite resin. Microleakage was evaluated using dye penetration analysis after immersion in 2% methylene blue for 10 days, followed by longitudinal sectioning and microscopic measurement at 500× magnification.</p><p><strong>Results: </strong>The fifth-generation adhesive group showed a mean microleakage of 0.2503 ± 0.1921 mm, while the seventh-generation group recorded 0.2484 ± 0.1764 mm. Statistical analysis using an independent t-test revealed no significant difference between the groups (<i>p</i> = 0.696).</p><p><strong>Conclusions: </strong>Both adhesive systems demonstrated comparable performance in minimizing microleakage under standardized conditions. Although the total-etch group exhibited slightly lower numerical values, the difference was not statistically significant. These findings suggest that both adhesive approaches can be clinically effective when applied appropriately.</p>\",\"PeriodicalId\":15767,\"journal\":{\"name\":\"Journal of Functional Biomaterials\",\"volume\":\"16 8\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387737/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/jfb16080301\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16080301","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Comparative in Vitro Evaluation of Marginal Sealing in Class I Composite Restorations Using Fifth- and Seventh-Generation Adhesives.
Background: A major challenge in adhesive dentistry, often leading to restoration failure, is microleakage. This in vitro comparative study was designed to assess microleakage at the tooth-composite interface. The investigation aimed to compare the sealing efficacy of two commonly used adhesive systems.
Methods: Standardized Class I cavities were prepared on 20 extracted human molars and randomly divided into two groups (n = 10 each). Group A was treated with a fifth-generation total-etch adhesive (OptiBond™ Solo Plus, Kerr Corporation, Orange, CA, USA), and Group B received a seventh-generation self-etch adhesive (Adhese® Universal VivaPen®, Ivoclar Vivadent AG, Schaan, Liechtenstein). All restorations were completed using Herculite XRV composite resin. Microleakage was evaluated using dye penetration analysis after immersion in 2% methylene blue for 10 days, followed by longitudinal sectioning and microscopic measurement at 500× magnification.
Results: The fifth-generation adhesive group showed a mean microleakage of 0.2503 ± 0.1921 mm, while the seventh-generation group recorded 0.2484 ± 0.1764 mm. Statistical analysis using an independent t-test revealed no significant difference between the groups (p = 0.696).
Conclusions: Both adhesive systems demonstrated comparable performance in minimizing microleakage under standardized conditions. Although the total-etch group exhibited slightly lower numerical values, the difference was not statistically significant. These findings suggest that both adhesive approaches can be clinically effective when applied appropriately.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.