玻璃陶瓷喷雾沉积技术促进氧化锆种植体基台表面能和成骨细胞活力。

IF 5.2 3区 医学 Q1 ENGINEERING, BIOMEDICAL
Wen-Chieh Hsu, Tao-Yu Cha, Yu-Chin Yao, Chien-Ming Kang, Sheng-Han Wu, Yuichi Mine, Chien-Fu Tseng, I-Ta Lee, Dan-Jae Lin, Tzu-Yu Peng
{"title":"玻璃陶瓷喷雾沉积技术促进氧化锆种植体基台表面能和成骨细胞活力。","authors":"Wen-Chieh Hsu, Tao-Yu Cha, Yu-Chin Yao, Chien-Ming Kang, Sheng-Han Wu, Yuichi Mine, Chien-Fu Tseng, I-Ta Lee, Dan-Jae Lin, Tzu-Yu Peng","doi":"10.3390/jfb16080288","DOIUrl":null,"url":null,"abstract":"<p><p>Zirconia is used widely for high-precision custom abutments; however, stress concentration can compromise osseointegration. Although glass-ceramic spray deposition (GCSD) can enhance the surface properties of zirconia, its biological effects remain unclear. In this study, the biological responses of human osteoblast-like (MG-63) cells to GCSD-modified zirconia surfaces were evaluated to assess the potential application in zirconia abutments. Disk-shaped zirconia and titanium alloy samples were prepared; titanium served as the control (Ti). Zirconia was subjected to polishing (NT), airborne-particle abrasion (AB), or GCSD with (GE) or without (GC) hydrofluoric acid (HF) etching. Surface characteristics, including wettability, surface energy (SE), and surface potential (SP), were analyzed. Cytotoxicity and MG-63 cell adhesion were assessed using the PrestoBlue assay, scanning electron microscopy (SEM), viability staining, and confocal laser scanning microscopy (CLSM). Statistical analysis was performed with a significance level of 0.05. GCSD produced a dense glass-ceramic coating on the zirconia surface, which significantly enhanced hydrophilicity as indicated by reduced water contact angles and increased SE in the GC and GE groups (<i>p</i> < 0.05). HF etching increased SP (<i>p</i> < 0.05). No cytotoxicity was observed in any group. SEM, viability staining, and CLSM revealed enhanced MG-63 cell attachment on Ti and GE surfaces and the highest viability ratio in the GE group. The NT group exhibited the lowest cell attachment and viability at all time points. GCSD effectively improved zirconia abutment surface properties by enhancing hydrophilicity and promoting MG-63 cell adhesion, with biocompatibility comparable to or better than that of titanium.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 8","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387143/pdf/","citationCount":"0","resultStr":"{\"title\":\"Promoting Surface Energy and Osteoblast Viability on Zirconia Implant Abutments Through Glass-Ceramic Spray Deposition Technology.\",\"authors\":\"Wen-Chieh Hsu, Tao-Yu Cha, Yu-Chin Yao, Chien-Ming Kang, Sheng-Han Wu, Yuichi Mine, Chien-Fu Tseng, I-Ta Lee, Dan-Jae Lin, Tzu-Yu Peng\",\"doi\":\"10.3390/jfb16080288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Zirconia is used widely for high-precision custom abutments; however, stress concentration can compromise osseointegration. Although glass-ceramic spray deposition (GCSD) can enhance the surface properties of zirconia, its biological effects remain unclear. In this study, the biological responses of human osteoblast-like (MG-63) cells to GCSD-modified zirconia surfaces were evaluated to assess the potential application in zirconia abutments. Disk-shaped zirconia and titanium alloy samples were prepared; titanium served as the control (Ti). Zirconia was subjected to polishing (NT), airborne-particle abrasion (AB), or GCSD with (GE) or without (GC) hydrofluoric acid (HF) etching. Surface characteristics, including wettability, surface energy (SE), and surface potential (SP), were analyzed. Cytotoxicity and MG-63 cell adhesion were assessed using the PrestoBlue assay, scanning electron microscopy (SEM), viability staining, and confocal laser scanning microscopy (CLSM). Statistical analysis was performed with a significance level of 0.05. GCSD produced a dense glass-ceramic coating on the zirconia surface, which significantly enhanced hydrophilicity as indicated by reduced water contact angles and increased SE in the GC and GE groups (<i>p</i> < 0.05). HF etching increased SP (<i>p</i> < 0.05). No cytotoxicity was observed in any group. SEM, viability staining, and CLSM revealed enhanced MG-63 cell attachment on Ti and GE surfaces and the highest viability ratio in the GE group. The NT group exhibited the lowest cell attachment and viability at all time points. GCSD effectively improved zirconia abutment surface properties by enhancing hydrophilicity and promoting MG-63 cell adhesion, with biocompatibility comparable to or better than that of titanium.</p>\",\"PeriodicalId\":15767,\"journal\":{\"name\":\"Journal of Functional Biomaterials\",\"volume\":\"16 8\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387143/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/jfb16080288\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16080288","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

氧化锆广泛用于高精度定制基台;然而,应力集中会损害骨整合。虽然玻璃陶瓷喷雾沉积(GCSD)可以提高氧化锆的表面性能,但其生物学效应尚不清楚。本研究通过观察人成骨细胞样细胞(MG-63)对gcsd修饰的氧化锆表面的生物学反应,评价其在氧化锆基台中的潜在应用。制备了圆盘状的氧化锆和钛合金样品;钛作为对照物(Ti)。氧化锆进行了抛光(NT)、空气颗粒磨损(AB)或GCSD (GE)或不(GC)氢氟酸(HF)蚀刻。分析了表面特性,包括润湿性、表面能(SE)和表面势(SP)。采用PrestoBlue实验、扫描电镜(SEM)、活力染色和共聚焦激光扫描显微镜(CLSM)评估细胞毒性和MG-63细胞粘附。进行统计学分析,显著性水平为0.05。GCSD在氧化锆表面形成致密的玻璃陶瓷涂层,GC组和GE组的水接触角降低,SE增加,显著增强了氧化锆的亲水性(p < 0.05)。HF刻蚀使SP升高(p < 0.05)。各组均未见细胞毒性反应。SEM、活力染色和CLSM显示MG-63细胞在Ti和GE表面的附着增强,GE组的活力比最高。NT组在各时间点的细胞附着和活力均最低。GCSD通过增强亲水性和促进MG-63细胞粘附,有效改善氧化锆基台表面性能,生物相容性与钛相当或优于钛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Promoting Surface Energy and Osteoblast Viability on Zirconia Implant Abutments Through Glass-Ceramic Spray Deposition Technology.

Promoting Surface Energy and Osteoblast Viability on Zirconia Implant Abutments Through Glass-Ceramic Spray Deposition Technology.

Promoting Surface Energy and Osteoblast Viability on Zirconia Implant Abutments Through Glass-Ceramic Spray Deposition Technology.

Promoting Surface Energy and Osteoblast Viability on Zirconia Implant Abutments Through Glass-Ceramic Spray Deposition Technology.

Zirconia is used widely for high-precision custom abutments; however, stress concentration can compromise osseointegration. Although glass-ceramic spray deposition (GCSD) can enhance the surface properties of zirconia, its biological effects remain unclear. In this study, the biological responses of human osteoblast-like (MG-63) cells to GCSD-modified zirconia surfaces were evaluated to assess the potential application in zirconia abutments. Disk-shaped zirconia and titanium alloy samples were prepared; titanium served as the control (Ti). Zirconia was subjected to polishing (NT), airborne-particle abrasion (AB), or GCSD with (GE) or without (GC) hydrofluoric acid (HF) etching. Surface characteristics, including wettability, surface energy (SE), and surface potential (SP), were analyzed. Cytotoxicity and MG-63 cell adhesion were assessed using the PrestoBlue assay, scanning electron microscopy (SEM), viability staining, and confocal laser scanning microscopy (CLSM). Statistical analysis was performed with a significance level of 0.05. GCSD produced a dense glass-ceramic coating on the zirconia surface, which significantly enhanced hydrophilicity as indicated by reduced water contact angles and increased SE in the GC and GE groups (p < 0.05). HF etching increased SP (p < 0.05). No cytotoxicity was observed in any group. SEM, viability staining, and CLSM revealed enhanced MG-63 cell attachment on Ti and GE surfaces and the highest viability ratio in the GE group. The NT group exhibited the lowest cell attachment and viability at all time points. GCSD effectively improved zirconia abutment surface properties by enhancing hydrophilicity and promoting MG-63 cell adhesion, with biocompatibility comparable to or better than that of titanium.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Functional Biomaterials
Journal of Functional Biomaterials Engineering-Biomedical Engineering
CiteScore
4.60
自引率
4.20%
发文量
226
审稿时长
11 weeks
期刊介绍: Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信