Tamara Rahela Ioana, Filip George Boeru, Ioana Mitruț, Anne-Marie Rauten, Mahmoud Elsaafin, Mihaela Ionescu, Ionela Elisabeta Staicu, Horia Octavian Manolea
{"title":"基于系统和形态基质的微型正畸种植体插入力矩分析。","authors":"Tamara Rahela Ioana, Filip George Boeru, Ioana Mitruț, Anne-Marie Rauten, Mahmoud Elsaafin, Mihaela Ionescu, Ionela Elisabeta Staicu, Horia Octavian Manolea","doi":"10.3390/jfb16080291","DOIUrl":null,"url":null,"abstract":"<p><p>Orthodontic mini-implants are well-known anchorage devices and stand out as a particularly effective tool for ensuring maximum anchorage without relying on patient compliance. Therefore, it is necessary to understand what levels of torque strains remain in the physiological limits and can guarantee the stability of these mini-implants. The aim of this study was to investigate and measure the initial and final torque values of orthodontic mini-implants when placed perpendicular to the maxillary and mandibular bone surfaces. In our study, orthodontic mini-implants from different companies were inserted perpendicularly using different insertion torques on the plate of both maxillary and mandibular bones from pig specimens. The torque values were then analyzed. The results of this study highlight the need for continued research to analyze the ideal insertion torque of different types of mini-implants depending on the insertion area, in order to achieve clinical success of mini-implants.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 8","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387137/pdf/","citationCount":"0","resultStr":"{\"title\":\"Analysis of Insertion Torque of Orthodontic Mini-Implants Depending on the System and the Morphological Substrate.\",\"authors\":\"Tamara Rahela Ioana, Filip George Boeru, Ioana Mitruț, Anne-Marie Rauten, Mahmoud Elsaafin, Mihaela Ionescu, Ionela Elisabeta Staicu, Horia Octavian Manolea\",\"doi\":\"10.3390/jfb16080291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Orthodontic mini-implants are well-known anchorage devices and stand out as a particularly effective tool for ensuring maximum anchorage without relying on patient compliance. Therefore, it is necessary to understand what levels of torque strains remain in the physiological limits and can guarantee the stability of these mini-implants. The aim of this study was to investigate and measure the initial and final torque values of orthodontic mini-implants when placed perpendicular to the maxillary and mandibular bone surfaces. In our study, orthodontic mini-implants from different companies were inserted perpendicularly using different insertion torques on the plate of both maxillary and mandibular bones from pig specimens. The torque values were then analyzed. The results of this study highlight the need for continued research to analyze the ideal insertion torque of different types of mini-implants depending on the insertion area, in order to achieve clinical success of mini-implants.</p>\",\"PeriodicalId\":15767,\"journal\":{\"name\":\"Journal of Functional Biomaterials\",\"volume\":\"16 8\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387137/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/jfb16080291\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16080291","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Analysis of Insertion Torque of Orthodontic Mini-Implants Depending on the System and the Morphological Substrate.
Orthodontic mini-implants are well-known anchorage devices and stand out as a particularly effective tool for ensuring maximum anchorage without relying on patient compliance. Therefore, it is necessary to understand what levels of torque strains remain in the physiological limits and can guarantee the stability of these mini-implants. The aim of this study was to investigate and measure the initial and final torque values of orthodontic mini-implants when placed perpendicular to the maxillary and mandibular bone surfaces. In our study, orthodontic mini-implants from different companies were inserted perpendicularly using different insertion torques on the plate of both maxillary and mandibular bones from pig specimens. The torque values were then analyzed. The results of this study highlight the need for continued research to analyze the ideal insertion torque of different types of mini-implants depending on the insertion area, in order to achieve clinical success of mini-implants.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.