饮用水处理生物固体残留改性对全氟烷基和多氟烷基物质浸出能力的影响。

IF 2.3 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Xinya Yang, Francisca Hinz, P Christopher Wilson, Caleb Gravesen, Jonathan D Judy
{"title":"饮用水处理生物固体残留改性对全氟烷基和多氟烷基物质浸出能力的影响。","authors":"Xinya Yang, Francisca Hinz, P Christopher Wilson, Caleb Gravesen, Jonathan D Judy","doi":"10.1002/jeq2.70074","DOIUrl":null,"url":null,"abstract":"<p><p>Public concerns exist over whether land application of biosolids is a pathway of introducing large amounts of per- and polyfluorinated alkyl substances (PFAS) into terrestrial ecosystems. Ongoing research is investigating a variety of high organic matter (OM) and Al/Fe phases for use as amendments to reduce PFAS leaching from matrices including biosolids. Drinking water treatment residuals (DWTRs) have characteristics (e.g., high OM, oxalate-extractable Al (Alo<sub>x</sub>), and/or oxalate-extractable Fe (Fe<sub>Ox</sub>) content) linked with PFAS retention and are widely available at low cost. We investigated sorption and desorption of a suite of eight PFAS, including sulfonates and carboxylates varying from C4 to C9, in biosolids amended with Al, Ca, and Fe DWTRs at rates from 2.5% to 10% wt/wt. Three biosolids were used: (1) high OM, low Fe<sub>Ox</sub>; (2) high OM, high Fe<sub>Ox</sub>; and (3) low OM, high Al<sub>Ox</sub>. For all biosolids and DWTRs tested, amendment with 2.5% and 5% DWTR resulted in no significant increase of partition coefficient (Kd) value in sorption for the examined PFAS when compared to controls, and only a few inconsistent significances in desorption. However, at 10% DWTR, significantly increased Kd values were observed in both sorption and desorption in some of the DWTR-treated biosolids, particularly those treated with Al DWTR. These results suggest that DWTRs (especially Al DWTRs) can enhance the retention of PFAS, and that DWTR amendment rate appeared to be more influential on PFAS sorption and desorption than physical characteristics of the DWTRs and biosolids or PFAS properties.</p>","PeriodicalId":15732,"journal":{"name":"Journal of environmental quality","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of drinking water treatment residual amendment to biosolids on per- and polyfluoroalkyl substances leachability.\",\"authors\":\"Xinya Yang, Francisca Hinz, P Christopher Wilson, Caleb Gravesen, Jonathan D Judy\",\"doi\":\"10.1002/jeq2.70074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Public concerns exist over whether land application of biosolids is a pathway of introducing large amounts of per- and polyfluorinated alkyl substances (PFAS) into terrestrial ecosystems. Ongoing research is investigating a variety of high organic matter (OM) and Al/Fe phases for use as amendments to reduce PFAS leaching from matrices including biosolids. Drinking water treatment residuals (DWTRs) have characteristics (e.g., high OM, oxalate-extractable Al (Alo<sub>x</sub>), and/or oxalate-extractable Fe (Fe<sub>Ox</sub>) content) linked with PFAS retention and are widely available at low cost. We investigated sorption and desorption of a suite of eight PFAS, including sulfonates and carboxylates varying from C4 to C9, in biosolids amended with Al, Ca, and Fe DWTRs at rates from 2.5% to 10% wt/wt. Three biosolids were used: (1) high OM, low Fe<sub>Ox</sub>; (2) high OM, high Fe<sub>Ox</sub>; and (3) low OM, high Al<sub>Ox</sub>. For all biosolids and DWTRs tested, amendment with 2.5% and 5% DWTR resulted in no significant increase of partition coefficient (Kd) value in sorption for the examined PFAS when compared to controls, and only a few inconsistent significances in desorption. However, at 10% DWTR, significantly increased Kd values were observed in both sorption and desorption in some of the DWTR-treated biosolids, particularly those treated with Al DWTR. These results suggest that DWTRs (especially Al DWTRs) can enhance the retention of PFAS, and that DWTR amendment rate appeared to be more influential on PFAS sorption and desorption than physical characteristics of the DWTRs and biosolids or PFAS properties.</p>\",\"PeriodicalId\":15732,\"journal\":{\"name\":\"Journal of environmental quality\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of environmental quality\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/jeq2.70074\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental quality","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/jeq2.70074","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

公众关注的是,生物固体的土地应用是否是将大量全氟和多氟烷基物质引入陆地生态系统的途径。目前正在进行的研究是研究各种高有机质(OM)和Al/Fe相作为改进剂,以减少PFAS从包括生物固体在内的基质中浸出。饮用水处理残留物(dwtr)具有与PFAS保留有关的特性(例如,高OM,草酸可提取的Al (Alox)和/或草酸可提取的Fe (FeOx)含量),并且以低成本广泛可用。我们研究了一组8种PFAS(包括从C4到C9不等的磺酸盐和羧酸盐)在用Al、Ca和Fe DWTRs改性的生物固体中的吸附和解吸,速率从2.5%到10% wt/wt。采用三种生物固体:(1)高OM,低FeOx;(2)高OM、高FeOx;(3)低OM,高AlOx。对于所有被测试的生物固体和DWTR,与对照组相比,2.5%和5% DWTR的修正导致所检查的PFAS的吸附分配系数(Kd)值没有显著增加,并且在解吸方面只有少数不一致的显著性。然而,在10% DWTR时,在一些经DWTR处理的生物固体中,特别是经Al DWTR处理的生物固体,在吸附和解吸过程中观察到Kd值显著增加。这些结果表明,DWTR(特别是Al DWTR)可以增强PFAS的保留,并且DWTR的修正速率似乎比DWTR的物理特性和生物固体或PFAS性能更能影响PFAS的吸附和解吸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of drinking water treatment residual amendment to biosolids on per- and polyfluoroalkyl substances leachability.

Public concerns exist over whether land application of biosolids is a pathway of introducing large amounts of per- and polyfluorinated alkyl substances (PFAS) into terrestrial ecosystems. Ongoing research is investigating a variety of high organic matter (OM) and Al/Fe phases for use as amendments to reduce PFAS leaching from matrices including biosolids. Drinking water treatment residuals (DWTRs) have characteristics (e.g., high OM, oxalate-extractable Al (Alox), and/or oxalate-extractable Fe (FeOx) content) linked with PFAS retention and are widely available at low cost. We investigated sorption and desorption of a suite of eight PFAS, including sulfonates and carboxylates varying from C4 to C9, in biosolids amended with Al, Ca, and Fe DWTRs at rates from 2.5% to 10% wt/wt. Three biosolids were used: (1) high OM, low FeOx; (2) high OM, high FeOx; and (3) low OM, high AlOx. For all biosolids and DWTRs tested, amendment with 2.5% and 5% DWTR resulted in no significant increase of partition coefficient (Kd) value in sorption for the examined PFAS when compared to controls, and only a few inconsistent significances in desorption. However, at 10% DWTR, significantly increased Kd values were observed in both sorption and desorption in some of the DWTR-treated biosolids, particularly those treated with Al DWTR. These results suggest that DWTRs (especially Al DWTRs) can enhance the retention of PFAS, and that DWTR amendment rate appeared to be more influential on PFAS sorption and desorption than physical characteristics of the DWTRs and biosolids or PFAS properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of environmental quality
Journal of environmental quality 环境科学-环境科学
CiteScore
4.90
自引率
8.30%
发文量
123
审稿时长
3 months
期刊介绍: Articles in JEQ cover various aspects of anthropogenic impacts on the environment, including agricultural, terrestrial, atmospheric, and aquatic systems, with emphasis on the understanding of underlying processes. To be acceptable for consideration in JEQ, a manuscript must make a significant contribution to the advancement of knowledge or toward a better understanding of existing concepts. The study should define principles of broad applicability, be related to problems over a sizable geographic area, or be of potential interest to a representative number of scientists. Emphasis is given to the understanding of underlying processes rather than to monitoring. Contributions are accepted from all disciplines for consideration by the editorial board. Manuscripts may be volunteered, invited, or coordinated as a special section or symposium.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信