An Ping, Fan Yang, Lingxiao Lu, Xiaotao Zhang, Jianan Lu, Huaming Li, Yichen Gu, Ziyang Jin, Jianmin Zhang, Ligen Shi
{"title":"脑浸润性ILC2s通过α-CGRP的产生促进脑卒中后血管生成。","authors":"An Ping, Fan Yang, Lingxiao Lu, Xiaotao Zhang, Jianan Lu, Huaming Li, Yichen Gu, Ziyang Jin, Jianmin Zhang, Ligen Shi","doi":"10.1084/jem.20241830","DOIUrl":null,"url":null,"abstract":"<p><p>Group 2 innate lymphoid cells (ILC2s) regulate immunity and tissue repair but are rarely found in the brain. Whether ILC2s can infiltrate the brain from bloodstream and the underlying mechanisms involved remain unclear. While ILC2s have recently been identified as key immunosuppressive players in neuroinflammation, their role in brain tissue repair remains promising but underexplored. Here, using in vivo and in vitro expansion of ILC2s, we demonstrate that ILC2s can enter the brain parenchyma from the blood circulation early after ischemic stroke in a CXCR1-dependent manner. Once in the brain, ILC2s improve long-term recovery of sensory-motor functions by promoting initiation of angiogenesis, namely angiogenic sprouting. Mechanistically, ILC2s produce α-calcitonin gene-related peptide (α-CGRP) to enhance angiogenic sprouting. ILC2s depleted of α-CGRP infiltrate the brain but fail to initiate angiogenesis. Impaired function of CGRP receptors on cerebrovascular endothelial cells abolishes the angiogenic effect of ILC2s. These findings highlight ILC2s as a promising target for promoting therapeutic angiogenesis in stroke recovery.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"222 11","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2025-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brain-infiltrating ILC2s boost poststroke angiogenic initiation through α-CGRP production.\",\"authors\":\"An Ping, Fan Yang, Lingxiao Lu, Xiaotao Zhang, Jianan Lu, Huaming Li, Yichen Gu, Ziyang Jin, Jianmin Zhang, Ligen Shi\",\"doi\":\"10.1084/jem.20241830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Group 2 innate lymphoid cells (ILC2s) regulate immunity and tissue repair but are rarely found in the brain. Whether ILC2s can infiltrate the brain from bloodstream and the underlying mechanisms involved remain unclear. While ILC2s have recently been identified as key immunosuppressive players in neuroinflammation, their role in brain tissue repair remains promising but underexplored. Here, using in vivo and in vitro expansion of ILC2s, we demonstrate that ILC2s can enter the brain parenchyma from the blood circulation early after ischemic stroke in a CXCR1-dependent manner. Once in the brain, ILC2s improve long-term recovery of sensory-motor functions by promoting initiation of angiogenesis, namely angiogenic sprouting. Mechanistically, ILC2s produce α-calcitonin gene-related peptide (α-CGRP) to enhance angiogenic sprouting. ILC2s depleted of α-CGRP infiltrate the brain but fail to initiate angiogenesis. Impaired function of CGRP receptors on cerebrovascular endothelial cells abolishes the angiogenic effect of ILC2s. These findings highlight ILC2s as a promising target for promoting therapeutic angiogenesis in stroke recovery.</p>\",\"PeriodicalId\":15760,\"journal\":{\"name\":\"Journal of Experimental Medicine\",\"volume\":\"222 11\",\"pages\":\"\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1084/jem.20241830\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1084/jem.20241830","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Brain-infiltrating ILC2s boost poststroke angiogenic initiation through α-CGRP production.
Group 2 innate lymphoid cells (ILC2s) regulate immunity and tissue repair but are rarely found in the brain. Whether ILC2s can infiltrate the brain from bloodstream and the underlying mechanisms involved remain unclear. While ILC2s have recently been identified as key immunosuppressive players in neuroinflammation, their role in brain tissue repair remains promising but underexplored. Here, using in vivo and in vitro expansion of ILC2s, we demonstrate that ILC2s can enter the brain parenchyma from the blood circulation early after ischemic stroke in a CXCR1-dependent manner. Once in the brain, ILC2s improve long-term recovery of sensory-motor functions by promoting initiation of angiogenesis, namely angiogenic sprouting. Mechanistically, ILC2s produce α-calcitonin gene-related peptide (α-CGRP) to enhance angiogenic sprouting. ILC2s depleted of α-CGRP infiltrate the brain but fail to initiate angiogenesis. Impaired function of CGRP receptors on cerebrovascular endothelial cells abolishes the angiogenic effect of ILC2s. These findings highlight ILC2s as a promising target for promoting therapeutic angiogenesis in stroke recovery.
期刊介绍:
Since its establishment in 1896, the Journal of Experimental Medicine (JEM) has steadfastly pursued the publication of enduring and exceptional studies in medical biology. In an era where numerous publishing groups are introducing specialized journals, we recognize the importance of offering a distinguished platform for studies that seamlessly integrate various disciplines within the pathogenesis field.
Our unique editorial system, driven by a commitment to exceptional author service, involves two collaborative groups of editors: professional editors with robust scientific backgrounds and full-time practicing scientists. Each paper undergoes evaluation by at least one editor from both groups before external review. Weekly editorial meetings facilitate comprehensive discussions on papers, incorporating external referee comments, and ensure swift decisions without unnecessary demands for extensive revisions.
Encompassing human studies and diverse in vivo experimental models of human disease, our focus within medical biology spans genetics, inflammation, immunity, infectious disease, cancer, vascular biology, metabolic disorders, neuroscience, and stem cell biology. We eagerly welcome reports ranging from atomic-level analyses to clinical interventions that unveil new mechanistic insights.