含角蛋白/明胶膜的细菌肽锌壳聚糖微球的生物工程纳米复合材料伤口愈合。

IF 3.9 4区 医学 Q1 PHARMACOLOGY & PHARMACY
Payal Shetty, Marina Koland, Suprit D Saoji, Mohammad Adnan Raza, Nilesh R Rarokar
{"title":"含角蛋白/明胶膜的细菌肽锌壳聚糖微球的生物工程纳米复合材料伤口愈合。","authors":"Payal Shetty, Marina Koland, Suprit D Saoji, Mohammad Adnan Raza, Nilesh R Rarokar","doi":"10.1080/1061186X.2025.2554758","DOIUrl":null,"url":null,"abstract":"<p><p>This study sought to create and characterize a novel antibiotic-loaded keratin-based film bandage for enhanced wound healing. Using the solvent casting method, keratin from chicken feathers was combined with gelatin (KG) in varying ratios to form films. Chitosan microspheres (Mc) were incorporated to achieve sustained release of bacitracin zinc (BZ). The microspheres were evaluated for particle size distribution, encapsulation efficiency, and in vitro drug release kinetics. The optimized film showed a controlled release profile with nearly 76% cumulative drug release over time. Embedding antibiotic-loaded microspheres within the keratin-gelatin matrix enabled prolonged delivery at the wound site, preventing infection and accelerating healing. In vivo excision wound studies demonstrated that the BZ-Mc-KG film achieved complete wound closure by day 20, significantly outperforming the disease control (<i>p</i> < .05). Comparative results indicated that microsphere-loaded gelatin films achieved 90% closure (<i>p</i> < .05), while free drug-loaded keratin-gelatin films reached 98% closure (<i>p</i> < .05). Slower healing was observed with drug-free keratin-gelatin films and standard mupirocin ointment (2.0% w/w). These findings highlight the synergistic potential of chicken feather keratin with BZ, supporting its application as a sustainable biomaterial for advanced wound dressings and effective therapeutic wound care strategies.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-18"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioengineered nanocomposite bacitracin zinc-loaded chitosan microspheres containing keratin/gelatine films for wound healing.\",\"authors\":\"Payal Shetty, Marina Koland, Suprit D Saoji, Mohammad Adnan Raza, Nilesh R Rarokar\",\"doi\":\"10.1080/1061186X.2025.2554758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study sought to create and characterize a novel antibiotic-loaded keratin-based film bandage for enhanced wound healing. Using the solvent casting method, keratin from chicken feathers was combined with gelatin (KG) in varying ratios to form films. Chitosan microspheres (Mc) were incorporated to achieve sustained release of bacitracin zinc (BZ). The microspheres were evaluated for particle size distribution, encapsulation efficiency, and in vitro drug release kinetics. The optimized film showed a controlled release profile with nearly 76% cumulative drug release over time. Embedding antibiotic-loaded microspheres within the keratin-gelatin matrix enabled prolonged delivery at the wound site, preventing infection and accelerating healing. In vivo excision wound studies demonstrated that the BZ-Mc-KG film achieved complete wound closure by day 20, significantly outperforming the disease control (<i>p</i> < .05). Comparative results indicated that microsphere-loaded gelatin films achieved 90% closure (<i>p</i> < .05), while free drug-loaded keratin-gelatin films reached 98% closure (<i>p</i> < .05). Slower healing was observed with drug-free keratin-gelatin films and standard mupirocin ointment (2.0% w/w). These findings highlight the synergistic potential of chicken feather keratin with BZ, supporting its application as a sustainable biomaterial for advanced wound dressings and effective therapeutic wound care strategies.</p>\",\"PeriodicalId\":15573,\"journal\":{\"name\":\"Journal of Drug Targeting\",\"volume\":\" \",\"pages\":\"1-18\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Drug Targeting\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/1061186X.2025.2554758\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug Targeting","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1061186X.2025.2554758","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

这项工作旨在创造和描述一种新的抗生素负载角蛋白基薄膜绷带,以加速伤口愈合。采用溶剂铸造技术,将从鸡毛中提取的角蛋白以不同的比例用于制造角蛋白与明胶(KG)结合的薄膜。将膜与壳聚糖基微球(Mc)偶联,随时间释放杆菌肽锌(BZ)。考察了壳聚糖微球的体外释药动力学、粒径分布和包封效率。随着时间的推移,抗生素释放谱的调节,最好的薄膜达到了近76%的累积释放。含有抗生素的微球整合在角蛋白-明胶基质中,有助于延长药物递送到伤口部位,从而预防感染并改善愈合过程。体内切除伤口调查发现,载抗生素微球包埋角蛋白-明胶薄膜(BZ-Mc-KG)在第20天达到100%的伤口愈合,明显优于疾病对照组(p < 0.05)。对比研究发现,虽然载药微球包埋明胶膜的伤口收缩率为90% (p< 0.05),但游离载药角蛋白明胶膜的伤口愈合率达到98% (p< 0.05),但无药角蛋白明胶膜的伤口愈合率较常规治疗(2.0% w/w莫匹罗星软膏)慢。这些发现强调了鸡毛角蛋白与杆菌肽锌结合的协同作用,强调了这种新型薄膜敷料作为促进伤口愈合的有效治疗策略的潜力。该研究证明了可持续角蛋白基生物材料在高级伤口护理应用中的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bioengineered nanocomposite bacitracin zinc-loaded chitosan microspheres containing keratin/gelatine films for wound healing.

This study sought to create and characterize a novel antibiotic-loaded keratin-based film bandage for enhanced wound healing. Using the solvent casting method, keratin from chicken feathers was combined with gelatin (KG) in varying ratios to form films. Chitosan microspheres (Mc) were incorporated to achieve sustained release of bacitracin zinc (BZ). The microspheres were evaluated for particle size distribution, encapsulation efficiency, and in vitro drug release kinetics. The optimized film showed a controlled release profile with nearly 76% cumulative drug release over time. Embedding antibiotic-loaded microspheres within the keratin-gelatin matrix enabled prolonged delivery at the wound site, preventing infection and accelerating healing. In vivo excision wound studies demonstrated that the BZ-Mc-KG film achieved complete wound closure by day 20, significantly outperforming the disease control (p < .05). Comparative results indicated that microsphere-loaded gelatin films achieved 90% closure (p < .05), while free drug-loaded keratin-gelatin films reached 98% closure (p < .05). Slower healing was observed with drug-free keratin-gelatin films and standard mupirocin ointment (2.0% w/w). These findings highlight the synergistic potential of chicken feather keratin with BZ, supporting its application as a sustainable biomaterial for advanced wound dressings and effective therapeutic wound care strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
165
审稿时长
2 months
期刊介绍: Journal of Drug Targeting publishes papers and reviews on all aspects of drug delivery and targeting for molecular and macromolecular drugs including the design and characterization of carrier systems (whether colloidal, protein or polymeric) for both vitro and/or in vivo applications of these drugs. Papers are not restricted to drugs delivered by way of a carrier, but also include studies on molecular and macromolecular drugs that are designed to target specific cellular or extra-cellular molecules. As such the journal publishes results on the activity, delivery and targeting of therapeutic peptides/proteins and nucleic acids including genes/plasmid DNA, gene silencing nucleic acids (e.g. small interfering (si)RNA, antisense oligonucleotides, ribozymes, DNAzymes), as well as aptamers, mononucleotides and monoclonal antibodies and their conjugates. The diagnostic application of targeting technologies as well as targeted delivery of diagnostic and imaging agents also fall within the scope of the journal. In addition, papers are sought on self-regulating systems, systems responsive to their environment and to external stimuli and those that can produce programmed, pulsed and otherwise complex delivery patterns.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信