整合素α、Talin和Npnt基因在海胆成骨中的表达及Npnt的作用

IF 1.7 3区 生物学 Q3 DEVELOPMENTAL BIOLOGY
Shanduo Chen, Tsvia Gildor, Prashant Tewari, Smadar Ben-Tabou de-Leon
{"title":"整合素α、Talin和Npnt基因在海胆成骨中的表达及Npnt的作用","authors":"Shanduo Chen, Tsvia Gildor, Prashant Tewari, Smadar Ben-Tabou de-Leon","doi":"10.1002/jez.b.23326","DOIUrl":null,"url":null,"abstract":"<p><p>Biomineralization, the formation of mineralized tissues like skeletons and shells, is an essential developmental process in diverged phyla. Vertebrates' biomineralization involves the secretion of specialized extracellular matrix (ECM) proteins and the formation of Integrin-based focal adhesions, yet less is known about the role of such factors in invertebrates. A recent study has shown that focal adhesions form around the calcite spicule of the sea urchin larva, however, the skeletogenic expression and role of adhesion related proteins in this system are understudied. Here, we identified a set of ECM and adhesion genes that show enriched expression in the sea urchin skeletogenic cells and studied the role of the ECM protein, Npnt, in Paracentrotus lividus. The integrin alpha proteins, Pl-Ahi, Pl-Aji, Pl-Api, and the Pl-Talin protein are highly conserved between sea urchin and humans and the expression of these genes is enriched in the skeletogenic cells during early skeletogenesis. Pl-npnt is expressed specifically in skeletogenic cells throughout skeletogenesis and requires Vascular Endothelial Growth Factor (VEGF) signaling for its maintenance. Genetic perturbations of Pl-npnt result in skeletal defects, including reduced length of skeletal rods, ectopic spicule formation and branching, while skeletogenic cell migration remained unaffected. The activation of focal adhesion kinase (FAK) around the spicules is independent of Pl-Npnt activity in agreement with the loss of Integrin binding site in the sea urchin Npnt protein. Our findings set the stage for further analyses of ECM and adhesion-mediated mechanisms that drive sea urchin biomineralization, and most likely participate in skeletal development across metazoans.</p>","PeriodicalId":15682,"journal":{"name":"Journal of experimental zoology. Part B, Molecular and developmental evolution","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Skeletogenic Expression of Integrin Alpha, Talin and Npnt Genes and Npnt Role in Sea Urchin Skeletogenesis.\",\"authors\":\"Shanduo Chen, Tsvia Gildor, Prashant Tewari, Smadar Ben-Tabou de-Leon\",\"doi\":\"10.1002/jez.b.23326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biomineralization, the formation of mineralized tissues like skeletons and shells, is an essential developmental process in diverged phyla. Vertebrates' biomineralization involves the secretion of specialized extracellular matrix (ECM) proteins and the formation of Integrin-based focal adhesions, yet less is known about the role of such factors in invertebrates. A recent study has shown that focal adhesions form around the calcite spicule of the sea urchin larva, however, the skeletogenic expression and role of adhesion related proteins in this system are understudied. Here, we identified a set of ECM and adhesion genes that show enriched expression in the sea urchin skeletogenic cells and studied the role of the ECM protein, Npnt, in Paracentrotus lividus. The integrin alpha proteins, Pl-Ahi, Pl-Aji, Pl-Api, and the Pl-Talin protein are highly conserved between sea urchin and humans and the expression of these genes is enriched in the skeletogenic cells during early skeletogenesis. Pl-npnt is expressed specifically in skeletogenic cells throughout skeletogenesis and requires Vascular Endothelial Growth Factor (VEGF) signaling for its maintenance. Genetic perturbations of Pl-npnt result in skeletal defects, including reduced length of skeletal rods, ectopic spicule formation and branching, while skeletogenic cell migration remained unaffected. The activation of focal adhesion kinase (FAK) around the spicules is independent of Pl-Npnt activity in agreement with the loss of Integrin binding site in the sea urchin Npnt protein. Our findings set the stage for further analyses of ECM and adhesion-mediated mechanisms that drive sea urchin biomineralization, and most likely participate in skeletal development across metazoans.</p>\",\"PeriodicalId\":15682,\"journal\":{\"name\":\"Journal of experimental zoology. Part B, Molecular and developmental evolution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of experimental zoology. Part B, Molecular and developmental evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/jez.b.23326\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of experimental zoology. Part B, Molecular and developmental evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jez.b.23326","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

生物矿化,即骨骼和贝壳等矿化组织的形成,是分化门中必不可少的发育过程。脊椎动物的生物矿化涉及特殊细胞外基质(ECM)蛋白的分泌和基于整合素的局灶粘连的形成,但对这些因素在无脊椎动物中的作用知之甚少。最近的一项研究表明,海胆幼体方解石针状体周围会形成局灶性黏附,然而,黏附相关蛋白在该系统中的表达和作用尚不清楚。在这里,我们鉴定了一组在海胆成骨细胞中表达丰富的ECM和粘附基因,并研究了ECM蛋白Npnt在lividus旁突中的作用。整合素α蛋白、Pl-Ahi、Pl-Aji、Pl-Api和Pl-Talin蛋白在海胆和人类之间高度保守,这些基因在早期成骨细胞中表达丰富。在整个骨骼形成过程中,Pl-npnt在成骨细胞中特异性表达,并需要血管内皮生长因子(VEGF)信号传导来维持其表达。Pl-npnt的遗传扰动导致骨骼缺陷,包括骨杆长度缩短,异位针状体形成和分支,而骨骼细胞迁移不受影响。针状体周围的病灶粘附激酶(FAK)的激活与Pl-Npnt活性无关,这与海胆Npnt蛋白中整合素结合位点的缺失一致。我们的研究结果为进一步分析驱动海胆生物矿化的ECM和粘附介导机制奠定了基础,这些机制很可能参与了后生动物的骨骼发育。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Skeletogenic Expression of Integrin Alpha, Talin and Npnt Genes and Npnt Role in Sea Urchin Skeletogenesis.

Biomineralization, the formation of mineralized tissues like skeletons and shells, is an essential developmental process in diverged phyla. Vertebrates' biomineralization involves the secretion of specialized extracellular matrix (ECM) proteins and the formation of Integrin-based focal adhesions, yet less is known about the role of such factors in invertebrates. A recent study has shown that focal adhesions form around the calcite spicule of the sea urchin larva, however, the skeletogenic expression and role of adhesion related proteins in this system are understudied. Here, we identified a set of ECM and adhesion genes that show enriched expression in the sea urchin skeletogenic cells and studied the role of the ECM protein, Npnt, in Paracentrotus lividus. The integrin alpha proteins, Pl-Ahi, Pl-Aji, Pl-Api, and the Pl-Talin protein are highly conserved between sea urchin and humans and the expression of these genes is enriched in the skeletogenic cells during early skeletogenesis. Pl-npnt is expressed specifically in skeletogenic cells throughout skeletogenesis and requires Vascular Endothelial Growth Factor (VEGF) signaling for its maintenance. Genetic perturbations of Pl-npnt result in skeletal defects, including reduced length of skeletal rods, ectopic spicule formation and branching, while skeletogenic cell migration remained unaffected. The activation of focal adhesion kinase (FAK) around the spicules is independent of Pl-Npnt activity in agreement with the loss of Integrin binding site in the sea urchin Npnt protein. Our findings set the stage for further analyses of ECM and adhesion-mediated mechanisms that drive sea urchin biomineralization, and most likely participate in skeletal development across metazoans.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
9.10%
发文量
63
审稿时长
6-12 weeks
期刊介绍: Developmental Evolution is a branch of evolutionary biology that integrates evidence and concepts from developmental biology, phylogenetics, comparative morphology, evolutionary genetics and increasingly also genomics, systems biology as well as synthetic biology to gain an understanding of the structure and evolution of organisms. The Journal of Experimental Zoology -B: Molecular and Developmental Evolution provides a forum where these fields are invited to bring together their insights to further a synthetic understanding of evolution from the molecular through the organismic level. Contributions from all these branches of science are welcome to JEZB. We particularly encourage submissions that apply the tools of genomics, as well as systems and synthetic biology to developmental evolution. At this time the impact of these emerging fields on developmental evolution has not been explored to its fullest extent and for this reason we are eager to foster the relationship of systems and synthetic biology with devo evo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信