在神经发育障碍的临床前模型中揭示内源性大麻素信号中断。

IF 13.6 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Nephi Stella
{"title":"在神经发育障碍的临床前模型中揭示内源性大麻素信号中断。","authors":"Nephi Stella","doi":"10.1172/JCI196707","DOIUrl":null,"url":null,"abstract":"<p><p>The search for transformative medicines has continuously uncovered select diseases associated with the disruption of the endocannabinoid (eCB) signaling system in the brain and emphasized the therapeutic value of small molecules that rescue this signaling system. In this issue of JCI, Wang et al. report that genetic disruption of PPP2R1A function in mouse forebrain, a preclinical mouse model of neurodevelopmental disorders, resulted in pronounced impairment of eCB signaling. Notably, small-molecule inhibitors of eCB inactivation rescued both eCB signaling and cognitive dysfunction in this model, providing a solid foundation to move such transformative therapeutic approaches based on targeting eCB signaling toward human clinical trial testing.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"135 17","pages":""},"PeriodicalIF":13.6000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12404740/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unraveling endocannabinoid signaling disruption in a preclinical model of neurodevelopmental disorders.\",\"authors\":\"Nephi Stella\",\"doi\":\"10.1172/JCI196707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The search for transformative medicines has continuously uncovered select diseases associated with the disruption of the endocannabinoid (eCB) signaling system in the brain and emphasized the therapeutic value of small molecules that rescue this signaling system. In this issue of JCI, Wang et al. report that genetic disruption of PPP2R1A function in mouse forebrain, a preclinical mouse model of neurodevelopmental disorders, resulted in pronounced impairment of eCB signaling. Notably, small-molecule inhibitors of eCB inactivation rescued both eCB signaling and cognitive dysfunction in this model, providing a solid foundation to move such transformative therapeutic approaches based on targeting eCB signaling toward human clinical trial testing.</p>\",\"PeriodicalId\":15469,\"journal\":{\"name\":\"Journal of Clinical Investigation\",\"volume\":\"135 17\",\"pages\":\"\"},\"PeriodicalIF\":13.6000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12404740/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/JCI196707\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI196707","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

对变革性药物的探索已经不断发现与大脑内源性大麻素(eCB)信号系统破坏相关的特定疾病,并强调了挽救该信号系统的小分子的治疗价值。在这一期的JCI中,Wang等人报道了小鼠前脑(一种神经发育障碍的临床前小鼠模型)中PPP2R1A功能的遗传破坏导致了eCB信号的明显损伤。值得注意的是,在这个模型中,eCB失活的小分子抑制剂拯救了eCB信号和认知功能障碍,为将这种基于靶向eCB信号的变革性治疗方法转移到人体临床试验测试提供了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unraveling endocannabinoid signaling disruption in a preclinical model of neurodevelopmental disorders.

Unraveling endocannabinoid signaling disruption in a preclinical model of neurodevelopmental disorders.

The search for transformative medicines has continuously uncovered select diseases associated with the disruption of the endocannabinoid (eCB) signaling system in the brain and emphasized the therapeutic value of small molecules that rescue this signaling system. In this issue of JCI, Wang et al. report that genetic disruption of PPP2R1A function in mouse forebrain, a preclinical mouse model of neurodevelopmental disorders, resulted in pronounced impairment of eCB signaling. Notably, small-molecule inhibitors of eCB inactivation rescued both eCB signaling and cognitive dysfunction in this model, providing a solid foundation to move such transformative therapeutic approaches based on targeting eCB signaling toward human clinical trial testing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Clinical Investigation
Journal of Clinical Investigation 医学-医学:研究与实验
CiteScore
24.50
自引率
1.30%
发文量
1034
审稿时长
2 months
期刊介绍: The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science. The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others. The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信