Preeti Yadav, Javier Gómez Ortega, Prerna Dabral, Whitney Tamaki, Charles Chien, Kai-Chun Chang, Nivedita Biswas, Sixuan Pan, Julia Nilsson, Xiaoyang Yin, Aritra Bhattacharyya, Kaveh Boostanpour, Tanay Jujaray, Jasper T Wang, Tatsuya Tsukui, Christopher J Molina, Vincent C Auyeung, Dean Sheppard, Baosheng Li, Mazharul Maishan, Hiroki Taenaka, Michael A Matthay, Rieko Muramatsu, Lenka Maliskova, Arnab Ghosh, Walter L Eckalbar, Ari B Molofsky, Stanley J Tamaki, Trever G Bivona, Adam R Abate, Allon Wagner, Satish K Pillai, Paul J Wolters, Kevin M Tharp, Mallar Bhattacharya
{"title":"髓-间充质串扰通过鸟氨酸在肺纤维化中驱动arg1依赖性纤维化代谢。","authors":"Preeti Yadav, Javier Gómez Ortega, Prerna Dabral, Whitney Tamaki, Charles Chien, Kai-Chun Chang, Nivedita Biswas, Sixuan Pan, Julia Nilsson, Xiaoyang Yin, Aritra Bhattacharyya, Kaveh Boostanpour, Tanay Jujaray, Jasper T Wang, Tatsuya Tsukui, Christopher J Molina, Vincent C Auyeung, Dean Sheppard, Baosheng Li, Mazharul Maishan, Hiroki Taenaka, Michael A Matthay, Rieko Muramatsu, Lenka Maliskova, Arnab Ghosh, Walter L Eckalbar, Ari B Molofsky, Stanley J Tamaki, Trever G Bivona, Adam R Abate, Allon Wagner, Satish K Pillai, Paul J Wolters, Kevin M Tharp, Mallar Bhattacharya","doi":"10.1172/JCI188734","DOIUrl":null,"url":null,"abstract":"<p><p>Idiopathic pulmonary fibrosis (IPF) is a disease of progressive lung remodeling and collagen deposition that leads to respiratory failure. Myeloid cells are abundant in IPF lung and in murine lung fibrosis, but their functional effects are incompletely understood. Using mouse and human lung models, we show that ornithine produced by myeloid cells expressing Arginase 1 (ARG1) serves as a substrate for proline and collagen synthesis by lung fibroblasts. The predominant ARG1-expressing myeloid cells in mouse lung were macrophages, but in IPF lung, high-dimensional imaging revealed ARG1 to be expressed mainly in neutrophils. Small-molecule ARG1 inhibition suppressed both ornithine levels and collagen expression in cultured, precision-cut IPF lung slices and in murine lung fibrosis. These results were confirmed in macrophage-specific Arg1 KO mice. Furthermore, we find that this pathway is regulated by cell-to-cell crosstalk, starting with purinergic signaling: Extracellular ATP (eATP) receptor P2RX4 was necessary for fibroblast IL-6 expression, which in turn was necessary for ARG1 expression by myeloid cells. Taken together, our findings define an immune-mesenchymal circuit that governs profibrotic metabolism in lung fibrosis.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.6000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Myeloid-mesenchymal crosstalk drives ARG1-dependent profibrotic metabolism via ornithine in lung fibrosis.\",\"authors\":\"Preeti Yadav, Javier Gómez Ortega, Prerna Dabral, Whitney Tamaki, Charles Chien, Kai-Chun Chang, Nivedita Biswas, Sixuan Pan, Julia Nilsson, Xiaoyang Yin, Aritra Bhattacharyya, Kaveh Boostanpour, Tanay Jujaray, Jasper T Wang, Tatsuya Tsukui, Christopher J Molina, Vincent C Auyeung, Dean Sheppard, Baosheng Li, Mazharul Maishan, Hiroki Taenaka, Michael A Matthay, Rieko Muramatsu, Lenka Maliskova, Arnab Ghosh, Walter L Eckalbar, Ari B Molofsky, Stanley J Tamaki, Trever G Bivona, Adam R Abate, Allon Wagner, Satish K Pillai, Paul J Wolters, Kevin M Tharp, Mallar Bhattacharya\",\"doi\":\"10.1172/JCI188734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Idiopathic pulmonary fibrosis (IPF) is a disease of progressive lung remodeling and collagen deposition that leads to respiratory failure. Myeloid cells are abundant in IPF lung and in murine lung fibrosis, but their functional effects are incompletely understood. Using mouse and human lung models, we show that ornithine produced by myeloid cells expressing Arginase 1 (ARG1) serves as a substrate for proline and collagen synthesis by lung fibroblasts. The predominant ARG1-expressing myeloid cells in mouse lung were macrophages, but in IPF lung, high-dimensional imaging revealed ARG1 to be expressed mainly in neutrophils. Small-molecule ARG1 inhibition suppressed both ornithine levels and collagen expression in cultured, precision-cut IPF lung slices and in murine lung fibrosis. These results were confirmed in macrophage-specific Arg1 KO mice. Furthermore, we find that this pathway is regulated by cell-to-cell crosstalk, starting with purinergic signaling: Extracellular ATP (eATP) receptor P2RX4 was necessary for fibroblast IL-6 expression, which in turn was necessary for ARG1 expression by myeloid cells. Taken together, our findings define an immune-mesenchymal circuit that governs profibrotic metabolism in lung fibrosis.</p>\",\"PeriodicalId\":15469,\"journal\":{\"name\":\"Journal of Clinical Investigation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":13.6000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/JCI188734\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI188734","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Myeloid-mesenchymal crosstalk drives ARG1-dependent profibrotic metabolism via ornithine in lung fibrosis.
Idiopathic pulmonary fibrosis (IPF) is a disease of progressive lung remodeling and collagen deposition that leads to respiratory failure. Myeloid cells are abundant in IPF lung and in murine lung fibrosis, but their functional effects are incompletely understood. Using mouse and human lung models, we show that ornithine produced by myeloid cells expressing Arginase 1 (ARG1) serves as a substrate for proline and collagen synthesis by lung fibroblasts. The predominant ARG1-expressing myeloid cells in mouse lung were macrophages, but in IPF lung, high-dimensional imaging revealed ARG1 to be expressed mainly in neutrophils. Small-molecule ARG1 inhibition suppressed both ornithine levels and collagen expression in cultured, precision-cut IPF lung slices and in murine lung fibrosis. These results were confirmed in macrophage-specific Arg1 KO mice. Furthermore, we find that this pathway is regulated by cell-to-cell crosstalk, starting with purinergic signaling: Extracellular ATP (eATP) receptor P2RX4 was necessary for fibroblast IL-6 expression, which in turn was necessary for ARG1 expression by myeloid cells. Taken together, our findings define an immune-mesenchymal circuit that governs profibrotic metabolism in lung fibrosis.
期刊介绍:
The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science.
The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others.
The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.