使用两种算法:基因型相关性和视觉检查对淋巴瘤中p53生物标志物的数字病理和图像分析。

IF 2 4区 医学 Q2 PATHOLOGY
Anisha Naik, Aarti Kanzaria, Xueyan Chen, Navneet Kaur, Chia-Chen Joyce Ho, Stephen D Smith, Ajay K Gopal, Mazyar Shadman, Kikkeri N Naresh
{"title":"使用两种算法:基因型相关性和视觉检查对淋巴瘤中p53生物标志物的数字病理和图像分析。","authors":"Anisha Naik, Aarti Kanzaria, Xueyan Chen, Navneet Kaur, Chia-Chen Joyce Ho, Stephen D Smith, Ajay K Gopal, Mazyar Shadman, Kikkeri N Naresh","doi":"10.1136/jcp-2025-210280","DOIUrl":null,"url":null,"abstract":"<p><p>p53 immunohistochemistry (IHC) is widely used as a rapid surrogate for detecting <i>TP53</i> mutations, with <i>TP53</i> mutations being a key biomarker for poor outcomes in lymphomas. We developed two algorithms using digital quantification tools to assess p53 expression from whole slide images of 77 lymphoma samples. An experienced pathologist visually evaluated the p53 slides, classifying cases as likely wild-type or mutated <i>TP53</i> genotype. We correlated the results of the algorithms and visual inspection with the actual <i>TP53</i> genotype. For cases with p53 overexpression (likely missense mutations), the algorithms achieved 86.7% sensitivity and 98.2% specificity (visual inspection: 80% and 95.2%). For cases with reduced p53 expression (likely 'other' mutations), the algorithms showed 92.7% sensitivity and 100% specificity (visual inspection: 40% and 95.8%). This study demonstrates that combining digital pathology with digital quantification tools-based algorithms can reliably predict <i>TP53</i> genotype from p53 IHC patterns, with comparable or slightly superior performance to an experienced pathologist.</p>","PeriodicalId":15391,"journal":{"name":"Journal of Clinical Pathology","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Digital pathology and image analysis of p53 biomarker in lymphomas using two algorithms: correlation with genotype and visual inspection.\",\"authors\":\"Anisha Naik, Aarti Kanzaria, Xueyan Chen, Navneet Kaur, Chia-Chen Joyce Ho, Stephen D Smith, Ajay K Gopal, Mazyar Shadman, Kikkeri N Naresh\",\"doi\":\"10.1136/jcp-2025-210280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>p53 immunohistochemistry (IHC) is widely used as a rapid surrogate for detecting <i>TP53</i> mutations, with <i>TP53</i> mutations being a key biomarker for poor outcomes in lymphomas. We developed two algorithms using digital quantification tools to assess p53 expression from whole slide images of 77 lymphoma samples. An experienced pathologist visually evaluated the p53 slides, classifying cases as likely wild-type or mutated <i>TP53</i> genotype. We correlated the results of the algorithms and visual inspection with the actual <i>TP53</i> genotype. For cases with p53 overexpression (likely missense mutations), the algorithms achieved 86.7% sensitivity and 98.2% specificity (visual inspection: 80% and 95.2%). For cases with reduced p53 expression (likely 'other' mutations), the algorithms showed 92.7% sensitivity and 100% specificity (visual inspection: 40% and 95.8%). This study demonstrates that combining digital pathology with digital quantification tools-based algorithms can reliably predict <i>TP53</i> genotype from p53 IHC patterns, with comparable or slightly superior performance to an experienced pathologist.</p>\",\"PeriodicalId\":15391,\"journal\":{\"name\":\"Journal of Clinical Pathology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1136/jcp-2025-210280\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jcp-2025-210280","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

p53免疫组织化学(IHC)被广泛用作检测TP53突变的快速替代方法,TP53突变是淋巴瘤预后不良的关键生物标志物。我们开发了两种算法,使用数字量化工具来评估77个淋巴瘤样本的全幻灯片图像中p53的表达。一位经验丰富的病理学家目视评估p53玻片,将病例分类为可能的野生型或突变TP53基因型。我们将算法和目视检查的结果与实际的TP53基因型相关联。对于p53过表达(可能是错义突变)的病例,该算法的灵敏度为86.7%,特异性为98.2%(目测为80%和95.2%)。对于p53表达降低(可能是“其他”突变)的病例,该算法显示出92.7%的灵敏度和100%的特异性(目测:40%和95.8%)。该研究表明,将数字病理学与基于数字量化工具的算法相结合,可以从p53 IHC模式中可靠地预测TP53基因型,其表现与经验丰富的病理学家相当或略好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Digital pathology and image analysis of p53 biomarker in lymphomas using two algorithms: correlation with genotype and visual inspection.

p53 immunohistochemistry (IHC) is widely used as a rapid surrogate for detecting TP53 mutations, with TP53 mutations being a key biomarker for poor outcomes in lymphomas. We developed two algorithms using digital quantification tools to assess p53 expression from whole slide images of 77 lymphoma samples. An experienced pathologist visually evaluated the p53 slides, classifying cases as likely wild-type or mutated TP53 genotype. We correlated the results of the algorithms and visual inspection with the actual TP53 genotype. For cases with p53 overexpression (likely missense mutations), the algorithms achieved 86.7% sensitivity and 98.2% specificity (visual inspection: 80% and 95.2%). For cases with reduced p53 expression (likely 'other' mutations), the algorithms showed 92.7% sensitivity and 100% specificity (visual inspection: 40% and 95.8%). This study demonstrates that combining digital pathology with digital quantification tools-based algorithms can reliably predict TP53 genotype from p53 IHC patterns, with comparable or slightly superior performance to an experienced pathologist.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
2.90%
发文量
113
审稿时长
3-8 weeks
期刊介绍: Journal of Clinical Pathology is a leading international journal covering all aspects of pathology. Diagnostic and research areas covered include histopathology, virology, haematology, microbiology, cytopathology, chemical pathology, molecular pathology, forensic pathology, dermatopathology, neuropathology and immunopathology. Each issue contains Reviews, Original articles, Short reports, Correspondence and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信