LaAlO3/SrTiO3(110)异质结构的界面稳定性和应变调制电子特性:第一性原理研究。

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Yaqin Wang, Yuling Li, Fangxu Wu, Demin Liu, Le Yuan, Mei Bi, Xiaolong Weng, Kesong Yang
{"title":"LaAlO3/SrTiO3(110)异质结构的界面稳定性和应变调制电子特性:第一性原理研究。","authors":"Yaqin Wang, Yuling Li, Fangxu Wu, Demin Liu, Le Yuan, Mei Bi, Xiaolong Weng, Kesong Yang","doi":"10.1063/5.0277966","DOIUrl":null,"url":null,"abstract":"<p><p>Perovskite oxide interfaces exhibit functional properties that are absent in their bulk counterparts. Compared to the well-studied LaAlO3/SrTiO3 (001) interface, the LaAlO3/SrTiO3 (110) interface remains relatively unexplored. Here, we investigate the interfacial properties of n-type LaAlO3/SrTiO3 (110) heterostructures, including cleavage energy, two-dimensional electron gas (2DEG) formation, and the effects of biaxial strain, using first-principles density functional theory calculations. Our results reveal that the (110) interface has a higher cleavage energy than the (001) interface, indicating stronger interfacial bonding interactions. In addition, we find that a critical LaAlO3 thickness of five unit cells is required to induce 2DEG formation in the (110) heterostructure, compared to four unit cells in the (001) system. Notably, biaxial strain in the (110) heterostructure induces behavior opposite to that observed in the (001) system. Compressive strain reduces the polarization strength in the LaAlO3 film, lowering the critical thickness required for 2DEG formation, whereas tensile strain enhances polarization, increasing the critical thickness for 2DEG formation. This contrasting strain response in the (110) and (001) heterostructures can be explained by their distinct crystallographic orientations at the interface. These findings provide new insights into strain-dependent interfacial phenomena and offer valuable guidance for designing functional perovskite oxide interfaces.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"163 8","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacial stability and strain-modulated electronic properties in LaAlO3/SrTiO3 (110) heterostructures: A first-principles study.\",\"authors\":\"Yaqin Wang, Yuling Li, Fangxu Wu, Demin Liu, Le Yuan, Mei Bi, Xiaolong Weng, Kesong Yang\",\"doi\":\"10.1063/5.0277966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Perovskite oxide interfaces exhibit functional properties that are absent in their bulk counterparts. Compared to the well-studied LaAlO3/SrTiO3 (001) interface, the LaAlO3/SrTiO3 (110) interface remains relatively unexplored. Here, we investigate the interfacial properties of n-type LaAlO3/SrTiO3 (110) heterostructures, including cleavage energy, two-dimensional electron gas (2DEG) formation, and the effects of biaxial strain, using first-principles density functional theory calculations. Our results reveal that the (110) interface has a higher cleavage energy than the (001) interface, indicating stronger interfacial bonding interactions. In addition, we find that a critical LaAlO3 thickness of five unit cells is required to induce 2DEG formation in the (110) heterostructure, compared to four unit cells in the (001) system. Notably, biaxial strain in the (110) heterostructure induces behavior opposite to that observed in the (001) system. Compressive strain reduces the polarization strength in the LaAlO3 film, lowering the critical thickness required for 2DEG formation, whereas tensile strain enhances polarization, increasing the critical thickness for 2DEG formation. This contrasting strain response in the (110) and (001) heterostructures can be explained by their distinct crystallographic orientations at the interface. These findings provide new insights into strain-dependent interfacial phenomena and offer valuable guidance for designing functional perovskite oxide interfaces.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"163 8\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0277966\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0277966","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

钙钛矿氧化物界面表现出在其块状对应物中不存在的功能特性。与研究充分的LaAlO3/SrTiO3(001)界面相比,LaAlO3/SrTiO3(110)界面仍然相对未被探索。本文采用第一性原理密度泛函理论计算,研究了n型LaAlO3/SrTiO3(110)异质结构的界面性质,包括解理能、二维电子气(2DEG)的形成以及双轴应变的影响。结果表明(110)界面比(001)界面具有更高的解理能,表明界面键合作用更强。此外,我们发现在(110)异质结构中诱导2DEG形成需要5个单位细胞的临界LaAlO3厚度,而在(001)异质结构中则需要4个单位细胞。值得注意的是,(110)异质结构中的双轴应变诱导的行为与(001)体系中观察到的相反。压缩应变降低了LaAlO3薄膜的极化强度,降低了形成2DEG所需的临界厚度,而拉伸应变增强了极化强度,增加了形成2DEG所需的临界厚度。(110)和(001)异质结构中不同的应变响应可以用它们在界面处不同的晶体取向来解释。这些发现为研究应变依赖界面现象提供了新的见解,并为设计功能钙钛矿氧化物界面提供了有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interfacial stability and strain-modulated electronic properties in LaAlO3/SrTiO3 (110) heterostructures: A first-principles study.

Perovskite oxide interfaces exhibit functional properties that are absent in their bulk counterparts. Compared to the well-studied LaAlO3/SrTiO3 (001) interface, the LaAlO3/SrTiO3 (110) interface remains relatively unexplored. Here, we investigate the interfacial properties of n-type LaAlO3/SrTiO3 (110) heterostructures, including cleavage energy, two-dimensional electron gas (2DEG) formation, and the effects of biaxial strain, using first-principles density functional theory calculations. Our results reveal that the (110) interface has a higher cleavage energy than the (001) interface, indicating stronger interfacial bonding interactions. In addition, we find that a critical LaAlO3 thickness of five unit cells is required to induce 2DEG formation in the (110) heterostructure, compared to four unit cells in the (001) system. Notably, biaxial strain in the (110) heterostructure induces behavior opposite to that observed in the (001) system. Compressive strain reduces the polarization strength in the LaAlO3 film, lowering the critical thickness required for 2DEG formation, whereas tensile strain enhances polarization, increasing the critical thickness for 2DEG formation. This contrasting strain response in the (110) and (001) heterostructures can be explained by their distinct crystallographic orientations at the interface. These findings provide new insights into strain-dependent interfacial phenomena and offer valuable guidance for designing functional perovskite oxide interfaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信