装置部署后心脏适应的分子机制。

IF 2.3 4区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
Letizia Rosa Romano, Paola Plutino, Giovanni Lopes, Rossella Quarta, Pierangelo Calvelli, Ciro Indolfi, Alberto Polimeni, Antonio Curcio
{"title":"装置部署后心脏适应的分子机制。","authors":"Letizia Rosa Romano, Paola Plutino, Giovanni Lopes, Rossella Quarta, Pierangelo Calvelli, Ciro Indolfi, Alberto Polimeni, Antonio Curcio","doi":"10.3390/jcdd12080291","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiac devices have transformed the management of heart failure, ventricular arrhythmias, ischemic cardiomyopathy, and valvular heart disease. Technologies such as cardiac resynchronization therapy (CRT), conduction system pacing, left ventricular assist devices (LVADs), and implantable cardioverter-defibrillators have contributed to abated global cardiovascular risk through action onto pathophysiological processes such as mechanical unloading, electrical resynchronization, or hemodynamic optimization, respectively. While their clinical benefits are well established, their long-term molecular and structural effects on the myocardium remain under investigation. Cardiac devices dynamically interact with myocardial and vascular biology, inducing molecular and extracellular matrix adaptations that vary by pathology. CRT enhances calcium cycling and reduces fibrosis, but chronic pacing may lead to pacing-induced cardiomyopathy. LVADs and Impella relieve ventricular workload yet alter sarcomeric integrity and mitochondrial function. Transcatheter valve therapies influence ventricular remodeling, conduction, and coronary flow. Understanding these remodeling processes is crucial for optimizing patient selection, device programming, and therapeutic strategies. This narrative review integrates the current knowledge on the molecular and structural effects of cardiac devices, highlighting their impact across different disease settings.</p>","PeriodicalId":15197,"journal":{"name":"Journal of Cardiovascular Development and Disease","volume":"12 8","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12386196/pdf/","citationCount":"0","resultStr":"{\"title\":\"Molecular Mechanisms of Cardiac Adaptation After Device Deployment.\",\"authors\":\"Letizia Rosa Romano, Paola Plutino, Giovanni Lopes, Rossella Quarta, Pierangelo Calvelli, Ciro Indolfi, Alberto Polimeni, Antonio Curcio\",\"doi\":\"10.3390/jcdd12080291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cardiac devices have transformed the management of heart failure, ventricular arrhythmias, ischemic cardiomyopathy, and valvular heart disease. Technologies such as cardiac resynchronization therapy (CRT), conduction system pacing, left ventricular assist devices (LVADs), and implantable cardioverter-defibrillators have contributed to abated global cardiovascular risk through action onto pathophysiological processes such as mechanical unloading, electrical resynchronization, or hemodynamic optimization, respectively. While their clinical benefits are well established, their long-term molecular and structural effects on the myocardium remain under investigation. Cardiac devices dynamically interact with myocardial and vascular biology, inducing molecular and extracellular matrix adaptations that vary by pathology. CRT enhances calcium cycling and reduces fibrosis, but chronic pacing may lead to pacing-induced cardiomyopathy. LVADs and Impella relieve ventricular workload yet alter sarcomeric integrity and mitochondrial function. Transcatheter valve therapies influence ventricular remodeling, conduction, and coronary flow. Understanding these remodeling processes is crucial for optimizing patient selection, device programming, and therapeutic strategies. This narrative review integrates the current knowledge on the molecular and structural effects of cardiac devices, highlighting their impact across different disease settings.</p>\",\"PeriodicalId\":15197,\"journal\":{\"name\":\"Journal of Cardiovascular Development and Disease\",\"volume\":\"12 8\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12386196/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cardiovascular Development and Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/jcdd12080291\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Development and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jcdd12080291","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

心脏装置已经改变了心力衰竭、室性心律失常、缺血性心肌病和瓣膜性心脏病的治疗。心脏再同步化治疗(CRT)、传导系统起搏、左室辅助装置(lvad)和植入式心律转复除颤器等技术分别通过作用于病理生理过程(如机械卸载、电再同步或血流动力学优化),有助于降低全球心血管风险。虽然它们的临床益处已经确立,但它们对心肌的长期分子和结构影响仍在研究中。心脏装置动态地与心肌和血管生物学相互作用,诱导不同病理的分子和细胞外基质适应。CRT增强钙循环和减少纤维化,但慢性起搏可能导致起搏诱导的心肌病。lvad和Impella减轻了心室负荷,但改变了肌肉完整性和线粒体功能。经导管瓣膜治疗影响心室重构、传导和冠状动脉血流。了解这些重塑过程对于优化患者选择、设备规划和治疗策略至关重要。这篇叙述性综述整合了目前关于心脏装置的分子和结构效应的知识,强调了它们在不同疾病环境中的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular Mechanisms of Cardiac Adaptation After Device Deployment.

Cardiac devices have transformed the management of heart failure, ventricular arrhythmias, ischemic cardiomyopathy, and valvular heart disease. Technologies such as cardiac resynchronization therapy (CRT), conduction system pacing, left ventricular assist devices (LVADs), and implantable cardioverter-defibrillators have contributed to abated global cardiovascular risk through action onto pathophysiological processes such as mechanical unloading, electrical resynchronization, or hemodynamic optimization, respectively. While their clinical benefits are well established, their long-term molecular and structural effects on the myocardium remain under investigation. Cardiac devices dynamically interact with myocardial and vascular biology, inducing molecular and extracellular matrix adaptations that vary by pathology. CRT enhances calcium cycling and reduces fibrosis, but chronic pacing may lead to pacing-induced cardiomyopathy. LVADs and Impella relieve ventricular workload yet alter sarcomeric integrity and mitochondrial function. Transcatheter valve therapies influence ventricular remodeling, conduction, and coronary flow. Understanding these remodeling processes is crucial for optimizing patient selection, device programming, and therapeutic strategies. This narrative review integrates the current knowledge on the molecular and structural effects of cardiac devices, highlighting their impact across different disease settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cardiovascular Development and Disease
Journal of Cardiovascular Development and Disease CARDIAC & CARDIOVASCULAR SYSTEMS-
CiteScore
2.60
自引率
12.50%
发文量
381
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信