{"title":"桉叶生物炭对水中Cd(II)和Pb(II)离子的有效去除。","authors":"Fatima Charboub, Rachid Ait Akbour, Mohamed Laabd, Abdelghani Hsini, Lahcen Bazzi, Abdallah Albourine","doi":"10.1080/15226514.2025.2552497","DOIUrl":null,"url":null,"abstract":"<p><p>Remediation of heavy metal pollution is essential for safeguarding ecological integrity and public health. The present work aimed to prepare a novel biochar from <i>Eucalyptus Camaldulensis</i> leaves (EC-biochar) for the effective removal of Cd<sup>2+</sup> and Pb<sup>2+</sup> cations, as representative heavy metals, from aqueous solutions. The adsorption performance of Cd<sup>2+</sup> and Pb<sup>2+</sup> cations by EC-biochar was assessed by varying different operating parameters (<i>e.g.</i> pH, temperature, EC-biochar dose, adsorption time, and adsorbate concentration). The maximum removal efficiencies of Pb<sup>2+</sup> (83.8%) and Cd<sup>2+</sup> (89.6%) ions were achieved at pH 4.5. The pseudo-second order and Langmuir isotherm models satisfactorily predict the adsorption of Pb<sup>2+</sup> and Cd<sup>2+</sup> cations onto EC-biochar. The negative values of Δ<i>G</i>° and Δ<i>H</i>° demonstrated that the adsorption process is spontaneously feasible and exothermic. It is also worth pointing out that the regeneration/reuse study revealed that the as-prepared EC-biochar maintained an excellent adsorption performance after five reuse cycles, demonstrating its suitable reusability. These findings demonstrate that the EC-biochar can serve as an inexpensive, effective and recyclable adsorbent for treating heavy metal-laden effluents.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-10"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<i>Eucalyptus camaldulensis</i> leaves-derived biochar for effective removal of Cd(II) and Pb(II) ions from aqueous solutions.\",\"authors\":\"Fatima Charboub, Rachid Ait Akbour, Mohamed Laabd, Abdelghani Hsini, Lahcen Bazzi, Abdallah Albourine\",\"doi\":\"10.1080/15226514.2025.2552497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Remediation of heavy metal pollution is essential for safeguarding ecological integrity and public health. The present work aimed to prepare a novel biochar from <i>Eucalyptus Camaldulensis</i> leaves (EC-biochar) for the effective removal of Cd<sup>2+</sup> and Pb<sup>2+</sup> cations, as representative heavy metals, from aqueous solutions. The adsorption performance of Cd<sup>2+</sup> and Pb<sup>2+</sup> cations by EC-biochar was assessed by varying different operating parameters (<i>e.g.</i> pH, temperature, EC-biochar dose, adsorption time, and adsorbate concentration). The maximum removal efficiencies of Pb<sup>2+</sup> (83.8%) and Cd<sup>2+</sup> (89.6%) ions were achieved at pH 4.5. The pseudo-second order and Langmuir isotherm models satisfactorily predict the adsorption of Pb<sup>2+</sup> and Cd<sup>2+</sup> cations onto EC-biochar. The negative values of Δ<i>G</i>° and Δ<i>H</i>° demonstrated that the adsorption process is spontaneously feasible and exothermic. It is also worth pointing out that the regeneration/reuse study revealed that the as-prepared EC-biochar maintained an excellent adsorption performance after five reuse cycles, demonstrating its suitable reusability. These findings demonstrate that the EC-biochar can serve as an inexpensive, effective and recyclable adsorbent for treating heavy metal-laden effluents.</p>\",\"PeriodicalId\":14235,\"journal\":{\"name\":\"International Journal of Phytoremediation\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Phytoremediation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/15226514.2025.2552497\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2025.2552497","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Eucalyptus camaldulensis leaves-derived biochar for effective removal of Cd(II) and Pb(II) ions from aqueous solutions.
Remediation of heavy metal pollution is essential for safeguarding ecological integrity and public health. The present work aimed to prepare a novel biochar from Eucalyptus Camaldulensis leaves (EC-biochar) for the effective removal of Cd2+ and Pb2+ cations, as representative heavy metals, from aqueous solutions. The adsorption performance of Cd2+ and Pb2+ cations by EC-biochar was assessed by varying different operating parameters (e.g. pH, temperature, EC-biochar dose, adsorption time, and adsorbate concentration). The maximum removal efficiencies of Pb2+ (83.8%) and Cd2+ (89.6%) ions were achieved at pH 4.5. The pseudo-second order and Langmuir isotherm models satisfactorily predict the adsorption of Pb2+ and Cd2+ cations onto EC-biochar. The negative values of ΔG° and ΔH° demonstrated that the adsorption process is spontaneously feasible and exothermic. It is also worth pointing out that the regeneration/reuse study revealed that the as-prepared EC-biochar maintained an excellent adsorption performance after five reuse cycles, demonstrating its suitable reusability. These findings demonstrate that the EC-biochar can serve as an inexpensive, effective and recyclable adsorbent for treating heavy metal-laden effluents.
期刊介绍:
The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.