{"title":"金属-有机框架纳米颗粒在乳腺癌诊断和治疗中的应用。","authors":"Xin-Ran Jiang, Jiahao Mi, Yiling Wang, Mengqi Yin, Yuna Tong, Yuxuan Zhu","doi":"10.2147/IJN.S534422","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer remains the most prevalent malignancy among women and the second leading cause of cancer-related mortality worldwide, primarily attributable to delayed diagnosis and limited therapeutic efficacy. Recent nanotechnology advances exhibit transformative potential in breast cancer management. Metal-organic frameworks (MOFs) have emerged as promising nanoplatforms for biomedical applications due to their exceptional adsorption capacity, high surface area, tunable porosity, structural stability, and facile surface functionalization-properties enabling advanced drug delivery systems (DDSs). This review systematically summarizes MOFs for DDSs and their applications in breast cancer. Classification by metal-ligand composition precedes critical analysis of synthesis methodologies, including comparative advantages and limitations alongside key factors influencing biomedical performance. A dedicated sections highlights normal and stimuli-responsive MOFs activated by endogenous or exogenous triggers. Furthermore, the application of multifunctional MOFs has been comprehensively explored, including chemotherapy, photothermal therapy, photodynamic therapy, immunotherapy, and diagnostic-therapeutic integration in breast cancer. Finally, challenges and possible solutions for MOFs in drug delivery are discussed.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"20 ","pages":"10127-10149"},"PeriodicalIF":6.5000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12379968/pdf/","citationCount":"0","resultStr":"{\"title\":\"Application of Metal-Organic Frameworks Nanoparticles in the Diagnosis and Treatment of Breast Cancer.\",\"authors\":\"Xin-Ran Jiang, Jiahao Mi, Yiling Wang, Mengqi Yin, Yuna Tong, Yuxuan Zhu\",\"doi\":\"10.2147/IJN.S534422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer remains the most prevalent malignancy among women and the second leading cause of cancer-related mortality worldwide, primarily attributable to delayed diagnosis and limited therapeutic efficacy. Recent nanotechnology advances exhibit transformative potential in breast cancer management. Metal-organic frameworks (MOFs) have emerged as promising nanoplatforms for biomedical applications due to their exceptional adsorption capacity, high surface area, tunable porosity, structural stability, and facile surface functionalization-properties enabling advanced drug delivery systems (DDSs). This review systematically summarizes MOFs for DDSs and their applications in breast cancer. Classification by metal-ligand composition precedes critical analysis of synthesis methodologies, including comparative advantages and limitations alongside key factors influencing biomedical performance. A dedicated sections highlights normal and stimuli-responsive MOFs activated by endogenous or exogenous triggers. Furthermore, the application of multifunctional MOFs has been comprehensively explored, including chemotherapy, photothermal therapy, photodynamic therapy, immunotherapy, and diagnostic-therapeutic integration in breast cancer. Finally, challenges and possible solutions for MOFs in drug delivery are discussed.</p>\",\"PeriodicalId\":14084,\"journal\":{\"name\":\"International Journal of Nanomedicine\",\"volume\":\"20 \",\"pages\":\"10127-10149\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12379968/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nanomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/IJN.S534422\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJN.S534422","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Application of Metal-Organic Frameworks Nanoparticles in the Diagnosis and Treatment of Breast Cancer.
Breast cancer remains the most prevalent malignancy among women and the second leading cause of cancer-related mortality worldwide, primarily attributable to delayed diagnosis and limited therapeutic efficacy. Recent nanotechnology advances exhibit transformative potential in breast cancer management. Metal-organic frameworks (MOFs) have emerged as promising nanoplatforms for biomedical applications due to their exceptional adsorption capacity, high surface area, tunable porosity, structural stability, and facile surface functionalization-properties enabling advanced drug delivery systems (DDSs). This review systematically summarizes MOFs for DDSs and their applications in breast cancer. Classification by metal-ligand composition precedes critical analysis of synthesis methodologies, including comparative advantages and limitations alongside key factors influencing biomedical performance. A dedicated sections highlights normal and stimuli-responsive MOFs activated by endogenous or exogenous triggers. Furthermore, the application of multifunctional MOFs has been comprehensively explored, including chemotherapy, photothermal therapy, photodynamic therapy, immunotherapy, and diagnostic-therapeutic integration in breast cancer. Finally, challenges and possible solutions for MOFs in drug delivery are discussed.
期刊介绍:
The International Journal of Nanomedicine is a globally recognized journal that focuses on the applications of nanotechnology in the biomedical field. It is a peer-reviewed and open-access publication that covers diverse aspects of this rapidly evolving research area.
With its strong emphasis on the clinical potential of nanoparticles in disease diagnostics, prevention, and treatment, the journal aims to showcase cutting-edge research and development in the field.
Starting from now, the International Journal of Nanomedicine will not accept meta-analyses for publication.