Yawei Wang, Xueting Cheng, Baoying Huang, Ruixiao Tan, Feng Fan, Li Zhao, Wenling Wang, Fei Ye, Yao Deng, Xiaoming Gao, Bin Wang, Wenjie Tan
{"title":"微针递送的多价MPXV DNA疫苗在小鼠中诱导有希望的免疫谱和交叉保护","authors":"Yawei Wang, Xueting Cheng, Baoying Huang, Ruixiao Tan, Feng Fan, Li Zhao, Wenling Wang, Fei Ye, Yao Deng, Xiaoming Gao, Bin Wang, Wenjie Tan","doi":"10.1111/imm.70030","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional DNA vaccines, typically administered via intramuscular injection with electroporation (IM-E), often cause discomfort and require trained personnel. Addressing these challenges, we developed multivalent DNA vaccines targeting both intracellular mature virion (IMV) and extracellular enveloped virion (EEV) proteins of the monkeypox virus (MPXV), designated as M2 (A29L, B6R), M3 (A29L, B6R, M1R) and M4 (A29L, B6R, M1R, A35R). These vaccine constructs were formulated into dissolvable microneedle array patches (D-MAPs) for intradermal delivery. Comparative studies in mice demonstrated that D-MAPs achieved approximately 70% delivery efficiency and elicited robust humoral immune responses in mice, including antigen-specific IgG and cross-neutralising antibodies against MPXV, VACV and ECTV-comparable to those induced by IM-E. Furthermore, D-MAP immunisation induced stronger T cell responses, particularly in the draining lymph nodes. Importantly, the multivalent DNA vaccines-especially M3 and M4-conferred substantial protection against lethal VACV-WR challenge, achieving levels of protection comparable to the traditional replication-competent smallpox vaccine TianTan (VTT), with significant viral suppression and mitigation of pathological damage. Collectively, this study provided valuable insights for the development of innovative MPXV DNA vaccines, highlighting a minimally invasive and suitable for field application with D-MAP with broad potential for combating mpox outbreaks and future orthopoxvirus pandemics.</p>","PeriodicalId":13508,"journal":{"name":"Immunology","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microneedle-Delivered Multivalent MPXV DNA Vaccines Induce Promising Immunity Profiles and Cross-Protection in Mice.\",\"authors\":\"Yawei Wang, Xueting Cheng, Baoying Huang, Ruixiao Tan, Feng Fan, Li Zhao, Wenling Wang, Fei Ye, Yao Deng, Xiaoming Gao, Bin Wang, Wenjie Tan\",\"doi\":\"10.1111/imm.70030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traditional DNA vaccines, typically administered via intramuscular injection with electroporation (IM-E), often cause discomfort and require trained personnel. Addressing these challenges, we developed multivalent DNA vaccines targeting both intracellular mature virion (IMV) and extracellular enveloped virion (EEV) proteins of the monkeypox virus (MPXV), designated as M2 (A29L, B6R), M3 (A29L, B6R, M1R) and M4 (A29L, B6R, M1R, A35R). These vaccine constructs were formulated into dissolvable microneedle array patches (D-MAPs) for intradermal delivery. Comparative studies in mice demonstrated that D-MAPs achieved approximately 70% delivery efficiency and elicited robust humoral immune responses in mice, including antigen-specific IgG and cross-neutralising antibodies against MPXV, VACV and ECTV-comparable to those induced by IM-E. Furthermore, D-MAP immunisation induced stronger T cell responses, particularly in the draining lymph nodes. Importantly, the multivalent DNA vaccines-especially M3 and M4-conferred substantial protection against lethal VACV-WR challenge, achieving levels of protection comparable to the traditional replication-competent smallpox vaccine TianTan (VTT), with significant viral suppression and mitigation of pathological damage. Collectively, this study provided valuable insights for the development of innovative MPXV DNA vaccines, highlighting a minimally invasive and suitable for field application with D-MAP with broad potential for combating mpox outbreaks and future orthopoxvirus pandemics.</p>\",\"PeriodicalId\":13508,\"journal\":{\"name\":\"Immunology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/imm.70030\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/imm.70030","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Microneedle-Delivered Multivalent MPXV DNA Vaccines Induce Promising Immunity Profiles and Cross-Protection in Mice.
Traditional DNA vaccines, typically administered via intramuscular injection with electroporation (IM-E), often cause discomfort and require trained personnel. Addressing these challenges, we developed multivalent DNA vaccines targeting both intracellular mature virion (IMV) and extracellular enveloped virion (EEV) proteins of the monkeypox virus (MPXV), designated as M2 (A29L, B6R), M3 (A29L, B6R, M1R) and M4 (A29L, B6R, M1R, A35R). These vaccine constructs were formulated into dissolvable microneedle array patches (D-MAPs) for intradermal delivery. Comparative studies in mice demonstrated that D-MAPs achieved approximately 70% delivery efficiency and elicited robust humoral immune responses in mice, including antigen-specific IgG and cross-neutralising antibodies against MPXV, VACV and ECTV-comparable to those induced by IM-E. Furthermore, D-MAP immunisation induced stronger T cell responses, particularly in the draining lymph nodes. Importantly, the multivalent DNA vaccines-especially M3 and M4-conferred substantial protection against lethal VACV-WR challenge, achieving levels of protection comparable to the traditional replication-competent smallpox vaccine TianTan (VTT), with significant viral suppression and mitigation of pathological damage. Collectively, this study provided valuable insights for the development of innovative MPXV DNA vaccines, highlighting a minimally invasive and suitable for field application with D-MAP with broad potential for combating mpox outbreaks and future orthopoxvirus pandemics.
期刊介绍:
Immunology is one of the longest-established immunology journals and is recognised as one of the leading journals in its field. We have global representation in authors, editors and reviewers.
Immunology publishes papers describing original findings in all areas of cellular and molecular immunology. High-quality original articles describing mechanistic insights into fundamental aspects of the immune system are welcome. Topics of interest to the journal include: immune cell development, cancer immunology, systems immunology/omics and informatics, inflammation, immunometabolism, immunology of infection, microbiota and immunity, mucosal immunology, and neuroimmunology.
The journal also publishes commissioned review articles on subjects of topical interest to immunologists, and commissions in-depth review series: themed sets of review articles which take a 360° view of select topics at the heart of immunological research.