Zhiwei Song;Xiang Zhang;Mingdong Li;Jieyuan Tan;Yiwen Wang
{"title":"脑机接口中任务切换和保持的在线神经到运动映射转移。","authors":"Zhiwei Song;Xiang Zhang;Mingdong Li;Jieyuan Tan;Yiwen Wang","doi":"10.1109/TNSRE.2025.3605246","DOIUrl":null,"url":null,"abstract":"Current brain-machine interfaces (BMIs) often rely on decoders trained for single tasks, limiting their flexibility in real-world applications. We propose an online learning framework that enables the transfer of neural-to-movement (knowledge) across tasks, supporting both task switching and memory retention. In our framework, neural activity is projected into a dynamical jPCA space to effectively dissociate into variant and invariant components. The variant components of the neural patterns are then aligned by deriving Gradient-based Kullback–Leibler Divergence Minimization (GKLD) for efficient online adaptation. A kernel reinforcement learning (KRL) model then decodes aligned neural signals while reusing prior neural-to-movement mapping. Evaluated on rats switching between a one-lever pressing and a two-lever discrimination task, the framework shows rapid convergence, over four times faster than the baseline method, and improves decoding accuracy by around 35% during task switching. Furthermore, when switching back to the original task, the framework successfully retains knowledge from the old task. Our method demonstrates general applicability to multiple task switching scenarios and maintains stable decoding across three representative days over a 21-day period, highlighting its potential for long-term, real-world use.","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"33 ","pages":"3674-3684"},"PeriodicalIF":5.2000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11146924","citationCount":"0","resultStr":"{\"title\":\"Online Neural-to-Movement Mapping Transfer for Task Switching and Retention in Brain–Machine Interfaces\",\"authors\":\"Zhiwei Song;Xiang Zhang;Mingdong Li;Jieyuan Tan;Yiwen Wang\",\"doi\":\"10.1109/TNSRE.2025.3605246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current brain-machine interfaces (BMIs) often rely on decoders trained for single tasks, limiting their flexibility in real-world applications. We propose an online learning framework that enables the transfer of neural-to-movement (knowledge) across tasks, supporting both task switching and memory retention. In our framework, neural activity is projected into a dynamical jPCA space to effectively dissociate into variant and invariant components. The variant components of the neural patterns are then aligned by deriving Gradient-based Kullback–Leibler Divergence Minimization (GKLD) for efficient online adaptation. A kernel reinforcement learning (KRL) model then decodes aligned neural signals while reusing prior neural-to-movement mapping. Evaluated on rats switching between a one-lever pressing and a two-lever discrimination task, the framework shows rapid convergence, over four times faster than the baseline method, and improves decoding accuracy by around 35% during task switching. Furthermore, when switching back to the original task, the framework successfully retains knowledge from the old task. Our method demonstrates general applicability to multiple task switching scenarios and maintains stable decoding across three representative days over a 21-day period, highlighting its potential for long-term, real-world use.\",\"PeriodicalId\":13419,\"journal\":{\"name\":\"IEEE Transactions on Neural Systems and Rehabilitation Engineering\",\"volume\":\"33 \",\"pages\":\"3674-3684\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11146924\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Neural Systems and Rehabilitation Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11146924/\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11146924/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Online Neural-to-Movement Mapping Transfer for Task Switching and Retention in Brain–Machine Interfaces
Current brain-machine interfaces (BMIs) often rely on decoders trained for single tasks, limiting their flexibility in real-world applications. We propose an online learning framework that enables the transfer of neural-to-movement (knowledge) across tasks, supporting both task switching and memory retention. In our framework, neural activity is projected into a dynamical jPCA space to effectively dissociate into variant and invariant components. The variant components of the neural patterns are then aligned by deriving Gradient-based Kullback–Leibler Divergence Minimization (GKLD) for efficient online adaptation. A kernel reinforcement learning (KRL) model then decodes aligned neural signals while reusing prior neural-to-movement mapping. Evaluated on rats switching between a one-lever pressing and a two-lever discrimination task, the framework shows rapid convergence, over four times faster than the baseline method, and improves decoding accuracy by around 35% during task switching. Furthermore, when switching back to the original task, the framework successfully retains knowledge from the old task. Our method demonstrates general applicability to multiple task switching scenarios and maintains stable decoding across three representative days over a 21-day period, highlighting its potential for long-term, real-world use.
期刊介绍:
Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.