利用人工智能优化可植入循环记录器警报:r波振幅和工作量减少的作用。

IF 4.4 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Heart Pub Date : 2025-08-27 DOI:10.1136/heartjnl-2025-326430
Luigi Cocchiara, Benedetta Brescia, Procolo Marchese, Stefano Nardi, Gianmarco Arabia, Alfonsomaria Salucci, Francesca Gennaro, Giovanni Mazzotta, Lucio Addeo, Emiliano Calvi, Gianfranco Mitacchione, Teresa Strisciuglio, Pasquale Vergara, Giovanni Esposito, Antonio Rapacciuolo
{"title":"利用人工智能优化可植入循环记录器警报:r波振幅和工作量减少的作用。","authors":"Luigi Cocchiara, Benedetta Brescia, Procolo Marchese, Stefano Nardi, Gianmarco Arabia, Alfonsomaria Salucci, Francesca Gennaro, Giovanni Mazzotta, Lucio Addeo, Emiliano Calvi, Gianfranco Mitacchione, Teresa Strisciuglio, Pasquale Vergara, Giovanni Esposito, Antonio Rapacciuolo","doi":"10.1136/heartjnl-2025-326430","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>False-positive (FP) alerts from implantable loop recorders increase clinical workload and may delay appropriate intervention. AccuRhythm AI, a cloud-based filtering algorithm, is designed to reduce these alerts in Reveal LINQ and LINQ II devices. This study assessed the algorithm's effect on FP and clinician burden reduction, with a focus on the influence of R-wave sensing amplitude.</p><p><strong>Methods: </strong>This multicentre, retrospective study included 800 patients with either Reveal LINQ or LINQ II. We analysed automated artificial intelligence (AI) reports and compared FP rates and transmission burden before and after software-based AI activation in the subset of Reveal LINQ patients to assess patient-level changes. The relationship between R-wave amplitude and FP incidence was also evaluated.</p><p><strong>Results: </strong>AI-based filtering, by AccuRhythm AI automatic analysis, reduced false pause alerts by 62% and false atrial fibrillation alerts by 33%, saving 210 clinician hours over 6 months. Patient level analysis, among 465 Reveal LINQ patients, showed FP+ patients (patients with ≥1 false-positive transmission) reduction from 55.5% to 15.1% post-AI (p<0.001), translating to 1128 hours saved. All residual false alerts occurred in patients with R-wave amplitudes <0.4 mV.</p><p><strong>Conclusion: </strong>Use of AccuRhythm AI was associated with a significant reduction in FPs and clinician workload while preserving diagnostic accuracy. R-wave amplitude remained a key factor influencing alert specificity, emphasising the continued importance of optimal device implantation and signal quality.</p>","PeriodicalId":12835,"journal":{"name":"Heart","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimising implantable loop recorder alerts with artificial intelligence: role of R-wave amplitude and workload reduction.\",\"authors\":\"Luigi Cocchiara, Benedetta Brescia, Procolo Marchese, Stefano Nardi, Gianmarco Arabia, Alfonsomaria Salucci, Francesca Gennaro, Giovanni Mazzotta, Lucio Addeo, Emiliano Calvi, Gianfranco Mitacchione, Teresa Strisciuglio, Pasquale Vergara, Giovanni Esposito, Antonio Rapacciuolo\",\"doi\":\"10.1136/heartjnl-2025-326430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>False-positive (FP) alerts from implantable loop recorders increase clinical workload and may delay appropriate intervention. AccuRhythm AI, a cloud-based filtering algorithm, is designed to reduce these alerts in Reveal LINQ and LINQ II devices. This study assessed the algorithm's effect on FP and clinician burden reduction, with a focus on the influence of R-wave sensing amplitude.</p><p><strong>Methods: </strong>This multicentre, retrospective study included 800 patients with either Reveal LINQ or LINQ II. We analysed automated artificial intelligence (AI) reports and compared FP rates and transmission burden before and after software-based AI activation in the subset of Reveal LINQ patients to assess patient-level changes. The relationship between R-wave amplitude and FP incidence was also evaluated.</p><p><strong>Results: </strong>AI-based filtering, by AccuRhythm AI automatic analysis, reduced false pause alerts by 62% and false atrial fibrillation alerts by 33%, saving 210 clinician hours over 6 months. Patient level analysis, among 465 Reveal LINQ patients, showed FP+ patients (patients with ≥1 false-positive transmission) reduction from 55.5% to 15.1% post-AI (p<0.001), translating to 1128 hours saved. All residual false alerts occurred in patients with R-wave amplitudes <0.4 mV.</p><p><strong>Conclusion: </strong>Use of AccuRhythm AI was associated with a significant reduction in FPs and clinician workload while preserving diagnostic accuracy. R-wave amplitude remained a key factor influencing alert specificity, emphasising the continued importance of optimal device implantation and signal quality.</p>\",\"PeriodicalId\":12835,\"journal\":{\"name\":\"Heart\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heart\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1136/heartjnl-2025-326430\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heart","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/heartjnl-2025-326430","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

背景:植入式环路记录仪的假阳性(FP)警报增加了临床工作量,并可能延迟适当的干预。AccuRhythm AI是一种基于云的过滤算法,旨在减少Reveal LINQ和LINQ II设备中的这些警报。本研究评估了该算法对FP和临床医生负担减轻的影响,重点研究了r波传感幅度的影响。方法:这项多中心回顾性研究纳入了800例Reveal LINQ或LINQ II型患者。我们分析了自动化人工智能(AI)报告,并比较了Reveal LINQ患者子集中基于软件的AI激活前后的FP率和传播负担,以评估患者水平的变化。并对r波振幅与FP发生率之间的关系进行了评价。结果:基于AI的过滤,通过accurhym AI自动分析,减少了62%的假暂停警报和33%的假房颤警报,在6个月内节省了210个临床小时。在465例Reveal LINQ患者中,患者水平分析显示,人工智能后FP+患者(假阳性传播≥1例的患者)从55.5%减少到15.1%(结论:使用AccuRhythm人工智能与FPs和临床医生工作量显著降低相关,同时保持诊断准确性。r波振幅仍然是影响警报特异性的关键因素,强调了最佳装置植入和信号质量的持续重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimising implantable loop recorder alerts with artificial intelligence: role of R-wave amplitude and workload reduction.

Background: False-positive (FP) alerts from implantable loop recorders increase clinical workload and may delay appropriate intervention. AccuRhythm AI, a cloud-based filtering algorithm, is designed to reduce these alerts in Reveal LINQ and LINQ II devices. This study assessed the algorithm's effect on FP and clinician burden reduction, with a focus on the influence of R-wave sensing amplitude.

Methods: This multicentre, retrospective study included 800 patients with either Reveal LINQ or LINQ II. We analysed automated artificial intelligence (AI) reports and compared FP rates and transmission burden before and after software-based AI activation in the subset of Reveal LINQ patients to assess patient-level changes. The relationship between R-wave amplitude and FP incidence was also evaluated.

Results: AI-based filtering, by AccuRhythm AI automatic analysis, reduced false pause alerts by 62% and false atrial fibrillation alerts by 33%, saving 210 clinician hours over 6 months. Patient level analysis, among 465 Reveal LINQ patients, showed FP+ patients (patients with ≥1 false-positive transmission) reduction from 55.5% to 15.1% post-AI (p<0.001), translating to 1128 hours saved. All residual false alerts occurred in patients with R-wave amplitudes <0.4 mV.

Conclusion: Use of AccuRhythm AI was associated with a significant reduction in FPs and clinician workload while preserving diagnostic accuracy. R-wave amplitude remained a key factor influencing alert specificity, emphasising the continued importance of optimal device implantation and signal quality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Heart
Heart 医学-心血管系统
CiteScore
10.30
自引率
5.30%
发文量
320
审稿时长
3-6 weeks
期刊介绍: Heart is an international peer reviewed journal that keeps cardiologists up to date with important research advances in cardiovascular disease. New scientific developments are highlighted in editorials and put in context with concise review articles. There is one free Editor’s Choice article in each issue, with open access options available to authors for all articles. Education in Heart articles provide a comprehensive, continuously updated, cardiology curriculum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信