Megna Tiwari, Elisabet Gas-Pascual, Janice Teal-Urquides, John Samuelson, Christopher M West
{"title":"O-聚焦影响刚地弓形虫核浆蛋白的丰度,但不影响其定位。","authors":"Megna Tiwari, Elisabet Gas-Pascual, Janice Teal-Urquides, John Samuelson, Christopher M West","doi":"10.1093/glycob/cwaf051","DOIUrl":null,"url":null,"abstract":"<p><p>Toxoplasma gondii is a highly successful intracellular mammalian and avian pathogen that must adapt to a wide range of intracellular and extracellular environments. A mechanism that may support this is the modification of hydroxyamino acid rich sequences of nucleocytoplasmic proteins with O-fucose. O-fucosylation of possibly hundreds of proteins is mediated by a single highly conserved nucleocytoplasmic enzyme. Deletion of the SPY O-fucosyltransferase gene is tolerated but inhibits parasite proliferation in fibroblasts and their accumulation in mouse brains. A prior ectopic expression study suggested that O-fucose is required to detect proteins considered essential. To distinguish whether the SPY requirement was specific to the method or for protein expression per se, GPN1, an RNA polymerase chaperone, was epitope-tagged at its endogenous locus in both normal and SPYΔ strains. GPN1 was shown to be substantially and quantitatively O-fucosylated and exhibited a modest 24% reduction in level in SPYΔ cells. Proteomic analysis of its interactome indicated that fucosylation did not affect its association with RNA polymerase subunits. GPN1 was mostly cytoplasmic based on super-resolution immunofluorescence microscopy, and this localization was not affected by O-Fuc. A fusion of its O-fucosylated serine-rich domain to yellow fluorescent protein behaved similarly. In comparison, the abundance of a Zn-finger containing protein also depended on SPY, whereas the abundance and localization of ERK7 were not affected nor were levels of two other proteins. Thus O-fucose directly but modestly promotes the accumulation of select targets, but it does not enforce their localization in nuclear assemblies that are highlighted by immunofluorescence studies.</p>","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12449179/pdf/","citationCount":"0","resultStr":"{\"title\":\"O-fucosylation affects abundance but not localization of select nucleocytoplasmic proteins in toxoplasma gondii.\",\"authors\":\"Megna Tiwari, Elisabet Gas-Pascual, Janice Teal-Urquides, John Samuelson, Christopher M West\",\"doi\":\"10.1093/glycob/cwaf051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Toxoplasma gondii is a highly successful intracellular mammalian and avian pathogen that must adapt to a wide range of intracellular and extracellular environments. A mechanism that may support this is the modification of hydroxyamino acid rich sequences of nucleocytoplasmic proteins with O-fucose. O-fucosylation of possibly hundreds of proteins is mediated by a single highly conserved nucleocytoplasmic enzyme. Deletion of the SPY O-fucosyltransferase gene is tolerated but inhibits parasite proliferation in fibroblasts and their accumulation in mouse brains. A prior ectopic expression study suggested that O-fucose is required to detect proteins considered essential. To distinguish whether the SPY requirement was specific to the method or for protein expression per se, GPN1, an RNA polymerase chaperone, was epitope-tagged at its endogenous locus in both normal and SPYΔ strains. GPN1 was shown to be substantially and quantitatively O-fucosylated and exhibited a modest 24% reduction in level in SPYΔ cells. Proteomic analysis of its interactome indicated that fucosylation did not affect its association with RNA polymerase subunits. GPN1 was mostly cytoplasmic based on super-resolution immunofluorescence microscopy, and this localization was not affected by O-Fuc. A fusion of its O-fucosylated serine-rich domain to yellow fluorescent protein behaved similarly. In comparison, the abundance of a Zn-finger containing protein also depended on SPY, whereas the abundance and localization of ERK7 were not affected nor were levels of two other proteins. Thus O-fucose directly but modestly promotes the accumulation of select targets, but it does not enforce their localization in nuclear assemblies that are highlighted by immunofluorescence studies.</p>\",\"PeriodicalId\":12766,\"journal\":{\"name\":\"Glycobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12449179/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glycobiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/glycob/cwaf051\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glycobiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/glycob/cwaf051","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
O-fucosylation affects abundance but not localization of select nucleocytoplasmic proteins in toxoplasma gondii.
Toxoplasma gondii is a highly successful intracellular mammalian and avian pathogen that must adapt to a wide range of intracellular and extracellular environments. A mechanism that may support this is the modification of hydroxyamino acid rich sequences of nucleocytoplasmic proteins with O-fucose. O-fucosylation of possibly hundreds of proteins is mediated by a single highly conserved nucleocytoplasmic enzyme. Deletion of the SPY O-fucosyltransferase gene is tolerated but inhibits parasite proliferation in fibroblasts and their accumulation in mouse brains. A prior ectopic expression study suggested that O-fucose is required to detect proteins considered essential. To distinguish whether the SPY requirement was specific to the method or for protein expression per se, GPN1, an RNA polymerase chaperone, was epitope-tagged at its endogenous locus in both normal and SPYΔ strains. GPN1 was shown to be substantially and quantitatively O-fucosylated and exhibited a modest 24% reduction in level in SPYΔ cells. Proteomic analysis of its interactome indicated that fucosylation did not affect its association with RNA polymerase subunits. GPN1 was mostly cytoplasmic based on super-resolution immunofluorescence microscopy, and this localization was not affected by O-Fuc. A fusion of its O-fucosylated serine-rich domain to yellow fluorescent protein behaved similarly. In comparison, the abundance of a Zn-finger containing protein also depended on SPY, whereas the abundance and localization of ERK7 were not affected nor were levels of two other proteins. Thus O-fucose directly but modestly promotes the accumulation of select targets, but it does not enforce their localization in nuclear assemblies that are highlighted by immunofluorescence studies.
期刊介绍:
Established as the leading journal in the field, Glycobiology provides a unique forum dedicated to research into the biological functions of glycans, including glycoproteins, glycolipids, proteoglycans and free oligosaccharides, and on proteins that specifically interact with glycans (including lectins, glycosyltransferases, and glycosidases).
Glycobiology is essential reading for researchers in biomedicine, basic science, and the biotechnology industries. By providing a single forum, the journal aims to improve communication between glycobiologists working in different disciplines and to increase the overall visibility of the field.