{"title":"靶向METTL3的小分子研究进展。","authors":"Feifei Wu, Lei Yu, Shilin Xu","doi":"10.1080/17568919.2025.2546781","DOIUrl":null,"url":null,"abstract":"<p><p><i>N</i><sup>6</sup>-methyladenosine (m<sup>6</sup>A) is the most prevalent internal modification of eukaryotic mRNA, playing a crucial role in the regulation of gene expression. Methyltransferase-like 3 (METTL3), a key catalytic component of the m<sup>6</sup>A methyltransferase complex, is primarily responsible for the deposition of m<sup>6</sup>A on target RNA. Recent studies have revealed that METTL3 contributes to diverse pathological processes, particularly tumorigenesis, through both m<sup>6</sup>A-dependent and independent mechanisms. As a result, METTL3 has attracted increasing interest as a potential therapeutic target across various cancer types. This review summarizes recent advances in the discovery of small molecules targeting METTL3, including substrate-competitive inhibitors, allosteric inhibitors, and proteolysis-targeting chimeras (PROTACs). It also discusses the strategies in their discovery, the associated structural features, and the remaining challenges and future directions in this field. Overall, these efforts provide valuable insights into the design and discovery of METTL3-targeted therapeutics with potential clinical applications.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":"17 15","pages":"1933-1944"},"PeriodicalIF":3.4000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12380225/pdf/","citationCount":"0","resultStr":"{\"title\":\"Recent advances in small molecules targeting the METTL3.\",\"authors\":\"Feifei Wu, Lei Yu, Shilin Xu\",\"doi\":\"10.1080/17568919.2025.2546781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>N</i><sup>6</sup>-methyladenosine (m<sup>6</sup>A) is the most prevalent internal modification of eukaryotic mRNA, playing a crucial role in the regulation of gene expression. Methyltransferase-like 3 (METTL3), a key catalytic component of the m<sup>6</sup>A methyltransferase complex, is primarily responsible for the deposition of m<sup>6</sup>A on target RNA. Recent studies have revealed that METTL3 contributes to diverse pathological processes, particularly tumorigenesis, through both m<sup>6</sup>A-dependent and independent mechanisms. As a result, METTL3 has attracted increasing interest as a potential therapeutic target across various cancer types. This review summarizes recent advances in the discovery of small molecules targeting METTL3, including substrate-competitive inhibitors, allosteric inhibitors, and proteolysis-targeting chimeras (PROTACs). It also discusses the strategies in their discovery, the associated structural features, and the remaining challenges and future directions in this field. Overall, these efforts provide valuable insights into the design and discovery of METTL3-targeted therapeutics with potential clinical applications.</p>\",\"PeriodicalId\":12475,\"journal\":{\"name\":\"Future medicinal chemistry\",\"volume\":\"17 15\",\"pages\":\"1933-1944\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12380225/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17568919.2025.2546781\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17568919.2025.2546781","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Recent advances in small molecules targeting the METTL3.
N6-methyladenosine (m6A) is the most prevalent internal modification of eukaryotic mRNA, playing a crucial role in the regulation of gene expression. Methyltransferase-like 3 (METTL3), a key catalytic component of the m6A methyltransferase complex, is primarily responsible for the deposition of m6A on target RNA. Recent studies have revealed that METTL3 contributes to diverse pathological processes, particularly tumorigenesis, through both m6A-dependent and independent mechanisms. As a result, METTL3 has attracted increasing interest as a potential therapeutic target across various cancer types. This review summarizes recent advances in the discovery of small molecules targeting METTL3, including substrate-competitive inhibitors, allosteric inhibitors, and proteolysis-targeting chimeras (PROTACs). It also discusses the strategies in their discovery, the associated structural features, and the remaining challenges and future directions in this field. Overall, these efforts provide valuable insights into the design and discovery of METTL3-targeted therapeutics with potential clinical applications.
期刊介绍:
Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.