Akanksha Gupta, Arpit Mehrotra, Abhilasha Sood, Bunty Sharma, Vikas Yadav, Ginpreet Kaur, Katrin Sak, Shakti Ranjan Satapathy, Hardeep Singh Tuli
{"title":"癌症治疗十字路口的microrna:来自WNT信号和类黄酮的见解。","authors":"Akanksha Gupta, Arpit Mehrotra, Abhilasha Sood, Bunty Sharma, Vikas Yadav, Ginpreet Kaur, Katrin Sak, Shakti Ranjan Satapathy, Hardeep Singh Tuli","doi":"10.3389/fmolb.2025.1616221","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAs (miRNAs) are pivotal post-transcriptional regulators that orchestrate gene expression programs governing cancer initiation, progression, metastasis, and therapeutic resistance. Among their many targets, the WNT signaling pathway, a key driver of malignancy, is tightly controlled by miRNAs, forming intricate feedback loops that shape tumor behavior. Concurrently, flavonoids, naturally occurring plant-derived polyphenols, are emerging as promising anticancer agents that can modulate both WNT signaling and miRNA expression. This review highlights miRNAs as the central regulators of oncogenic signaling, focusing on their dualistic role in cancer biology and their modulation by flavonoids. We explore the mechanistic frameworks underpinning miRNA-WNT interactions and the therapeutic potential of flavonoid-mediated miRNA reprogramming for precision miRNA targeting. Unraveling this regulatory axis offers a promising avenue for developing multi-targeted therapies and personalized cancer treatment strategies.</p>","PeriodicalId":12465,"journal":{"name":"Frontiers in Molecular Biosciences","volume":"12 ","pages":"1616221"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12378971/pdf/","citationCount":"0","resultStr":"{\"title\":\"MicroRNAs at the crossroad of cancer therapeutics: insights from WNT signaling & flavonoids.\",\"authors\":\"Akanksha Gupta, Arpit Mehrotra, Abhilasha Sood, Bunty Sharma, Vikas Yadav, Ginpreet Kaur, Katrin Sak, Shakti Ranjan Satapathy, Hardeep Singh Tuli\",\"doi\":\"10.3389/fmolb.2025.1616221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MicroRNAs (miRNAs) are pivotal post-transcriptional regulators that orchestrate gene expression programs governing cancer initiation, progression, metastasis, and therapeutic resistance. Among their many targets, the WNT signaling pathway, a key driver of malignancy, is tightly controlled by miRNAs, forming intricate feedback loops that shape tumor behavior. Concurrently, flavonoids, naturally occurring plant-derived polyphenols, are emerging as promising anticancer agents that can modulate both WNT signaling and miRNA expression. This review highlights miRNAs as the central regulators of oncogenic signaling, focusing on their dualistic role in cancer biology and their modulation by flavonoids. We explore the mechanistic frameworks underpinning miRNA-WNT interactions and the therapeutic potential of flavonoid-mediated miRNA reprogramming for precision miRNA targeting. Unraveling this regulatory axis offers a promising avenue for developing multi-targeted therapies and personalized cancer treatment strategies.</p>\",\"PeriodicalId\":12465,\"journal\":{\"name\":\"Frontiers in Molecular Biosciences\",\"volume\":\"12 \",\"pages\":\"1616221\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12378971/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Molecular Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fmolb.2025.1616221\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmolb.2025.1616221","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
MicroRNAs at the crossroad of cancer therapeutics: insights from WNT signaling & flavonoids.
MicroRNAs (miRNAs) are pivotal post-transcriptional regulators that orchestrate gene expression programs governing cancer initiation, progression, metastasis, and therapeutic resistance. Among their many targets, the WNT signaling pathway, a key driver of malignancy, is tightly controlled by miRNAs, forming intricate feedback loops that shape tumor behavior. Concurrently, flavonoids, naturally occurring plant-derived polyphenols, are emerging as promising anticancer agents that can modulate both WNT signaling and miRNA expression. This review highlights miRNAs as the central regulators of oncogenic signaling, focusing on their dualistic role in cancer biology and their modulation by flavonoids. We explore the mechanistic frameworks underpinning miRNA-WNT interactions and the therapeutic potential of flavonoid-mediated miRNA reprogramming for precision miRNA targeting. Unraveling this regulatory axis offers a promising avenue for developing multi-targeted therapies and personalized cancer treatment strategies.
期刊介绍:
Much of contemporary investigation in the life sciences is devoted to the molecular-scale understanding of the relationships between genes and the environment — in particular, dynamic alterations in the levels, modifications, and interactions of cellular effectors, including proteins. Frontiers in Molecular Biosciences offers an international publication platform for basic as well as applied research; we encourage contributions spanning both established and emerging areas of biology. To this end, the journal draws from empirical disciplines such as structural biology, enzymology, biochemistry, and biophysics, capitalizing as well on the technological advancements that have enabled metabolomics and proteomics measurements in massively parallel throughput, and the development of robust and innovative computational biology strategies. We also recognize influences from medicine and technology, welcoming studies in molecular genetics, molecular diagnostics and therapeutics, and nanotechnology.
Our ultimate objective is the comprehensive illustration of the molecular mechanisms regulating proteins, nucleic acids, carbohydrates, lipids, and small metabolites in organisms across all branches of life.
In addition to interesting new findings, techniques, and applications, Frontiers in Molecular Biosciences will consider new testable hypotheses to inspire different perspectives and stimulate scientific dialogue. The integration of in silico, in vitro, and in vivo approaches will benefit endeavors across all domains of the life sciences.