Tae Kim, Javier Rasero, Anna L Marsland, Mark R Scudder, Tamer S Ibrahim, Peter J Gianaros
{"title":"海马血管供应及其在海马体积系统生理影响中的中介作用。","authors":"Tae Kim, Javier Rasero, Anna L Marsland, Mark R Scudder, Tamer S Ibrahim, Peter J Gianaros","doi":"10.3389/fnagi.2025.1590242","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Aging-related systemic cardiovascular changes can impair cerebrovascular circulation, contributing to hippocampal atrophy and cognitive decline. However, the mechanistic pathways by which systemic alterations may relate to hippocampal atrophy via hippocampal vascular features remain unclear.</p><p><strong>Methods: </strong>In this study, 191 participants (aged 30-59 years, 115 female) underwent 7T MRI to segment hippocampal supply vessels and hippocampal volume from T1-weighted images. Twenty-three systemic parameters related to the metabolic syndrome, autonomic function, inflammation, vascular stiffness, and endothelial function were measured at rest. Mediation analysis examined whether hippocampal vessel velocity and size mediated the relationship between systemic factors and hippocampal volume.</p><p><strong>Results: </strong>Hippocampal volume was highly associated with hippocampal supply vessel velocity, showing a pronounced right lateralized effect. Indirect associations of vessel velocity with hippocampal volume were identified for circulating vascular and intercellular adhesion molecules, heart rate variability, fasting insulin, and spontaneous baroreflex sensitivity. No significant mediated relationships were found for blood pressure, adiposity, mean heart rate, cardiac output, pre-ejection period, reactive hyperemia, pulse wave velocity, mean carotid artery intimal medial thickness, fasting glucose, lipid levels, circulating interleukin-6, hemoglobin A1C, or blood pressure variability.</p><p><strong>Conclusion: </strong>These findings highlight the role of vascular inflammation, autonomic dysfunction, and metabolic disturbances in hippocampal atrophy, with hippocampal vessel velocity serving as a key mediator. This insight advances our understanding of cerebrovascular contributions to hippocampal structural integrity and cognitive health.</p>","PeriodicalId":12450,"journal":{"name":"Frontiers in Aging Neuroscience","volume":"17 ","pages":"1590242"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12364891/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hippocampal vascular supply and its mediating role in systemic physiological influences on hippocampal volume.\",\"authors\":\"Tae Kim, Javier Rasero, Anna L Marsland, Mark R Scudder, Tamer S Ibrahim, Peter J Gianaros\",\"doi\":\"10.3389/fnagi.2025.1590242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Aging-related systemic cardiovascular changes can impair cerebrovascular circulation, contributing to hippocampal atrophy and cognitive decline. However, the mechanistic pathways by which systemic alterations may relate to hippocampal atrophy via hippocampal vascular features remain unclear.</p><p><strong>Methods: </strong>In this study, 191 participants (aged 30-59 years, 115 female) underwent 7T MRI to segment hippocampal supply vessels and hippocampal volume from T1-weighted images. Twenty-three systemic parameters related to the metabolic syndrome, autonomic function, inflammation, vascular stiffness, and endothelial function were measured at rest. Mediation analysis examined whether hippocampal vessel velocity and size mediated the relationship between systemic factors and hippocampal volume.</p><p><strong>Results: </strong>Hippocampal volume was highly associated with hippocampal supply vessel velocity, showing a pronounced right lateralized effect. Indirect associations of vessel velocity with hippocampal volume were identified for circulating vascular and intercellular adhesion molecules, heart rate variability, fasting insulin, and spontaneous baroreflex sensitivity. No significant mediated relationships were found for blood pressure, adiposity, mean heart rate, cardiac output, pre-ejection period, reactive hyperemia, pulse wave velocity, mean carotid artery intimal medial thickness, fasting glucose, lipid levels, circulating interleukin-6, hemoglobin A1C, or blood pressure variability.</p><p><strong>Conclusion: </strong>These findings highlight the role of vascular inflammation, autonomic dysfunction, and metabolic disturbances in hippocampal atrophy, with hippocampal vessel velocity serving as a key mediator. This insight advances our understanding of cerebrovascular contributions to hippocampal structural integrity and cognitive health.</p>\",\"PeriodicalId\":12450,\"journal\":{\"name\":\"Frontiers in Aging Neuroscience\",\"volume\":\"17 \",\"pages\":\"1590242\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12364891/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Aging Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fnagi.2025.1590242\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Aging Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnagi.2025.1590242","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
Hippocampal vascular supply and its mediating role in systemic physiological influences on hippocampal volume.
Background: Aging-related systemic cardiovascular changes can impair cerebrovascular circulation, contributing to hippocampal atrophy and cognitive decline. However, the mechanistic pathways by which systemic alterations may relate to hippocampal atrophy via hippocampal vascular features remain unclear.
Methods: In this study, 191 participants (aged 30-59 years, 115 female) underwent 7T MRI to segment hippocampal supply vessels and hippocampal volume from T1-weighted images. Twenty-three systemic parameters related to the metabolic syndrome, autonomic function, inflammation, vascular stiffness, and endothelial function were measured at rest. Mediation analysis examined whether hippocampal vessel velocity and size mediated the relationship between systemic factors and hippocampal volume.
Results: Hippocampal volume was highly associated with hippocampal supply vessel velocity, showing a pronounced right lateralized effect. Indirect associations of vessel velocity with hippocampal volume were identified for circulating vascular and intercellular adhesion molecules, heart rate variability, fasting insulin, and spontaneous baroreflex sensitivity. No significant mediated relationships were found for blood pressure, adiposity, mean heart rate, cardiac output, pre-ejection period, reactive hyperemia, pulse wave velocity, mean carotid artery intimal medial thickness, fasting glucose, lipid levels, circulating interleukin-6, hemoglobin A1C, or blood pressure variability.
Conclusion: These findings highlight the role of vascular inflammation, autonomic dysfunction, and metabolic disturbances in hippocampal atrophy, with hippocampal vessel velocity serving as a key mediator. This insight advances our understanding of cerebrovascular contributions to hippocampal structural integrity and cognitive health.
期刊介绍:
Frontiers in Aging Neuroscience is a leading journal in its field, publishing rigorously peer-reviewed research that advances our understanding of the mechanisms of Central Nervous System aging and age-related neural diseases. Specialty Chief Editor Thomas Wisniewski at the New York University School of Medicine is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.