Orian Dayan, Yulia Kroupitski, Tali Sayas, Shlomo Sela Saldinger, Maya Kleiman
{"title":"仿生学显示,番茄叶片微观结构影响肠沙门氏菌的粘附和定位。","authors":"Orian Dayan, Yulia Kroupitski, Tali Sayas, Shlomo Sela Saldinger, Maya Kleiman","doi":"10.1016/j.fm.2025.104893","DOIUrl":null,"url":null,"abstract":"<p><p>Non-typhoidal Salmonella enterica serovars are a major cause of diarrheal diseases worldwide and represent a significant health concern. Several Salmonella outbreaks worldwide originated from bacteria residing on plants, specifically on leaves. Understanding the adhesion and survival of Salmonella upon the leaf surface is, hence, of great importance. Among other factors involved in the localization and adhesion of Salmonella to the leaf surface, the surface microstructure did not receive significant attention. Here, we study the localization and adhesion of Salmonella to the surface of tomato leaves, with emphasis on the role of the leaf surface microstructure. To do so, we use biomimetics, a field in chemistry and material sciences aimed at mimicking biological systems. We formed synthetic replication of the leaf surface microstructure, to isolate the microstructure property from all other leaf properties. We found that the distribution of Salmonella upon the leaf surface is not random and there is a clear localization preference to the intercellular spaces and the trichomes. We found that this localization repeats in the synthetic system, suggesting this phenomenon is due to the microstructural features of the leaf. The localization of Salmonella on the trichome is independent of flagella, curli or cellulose, and does not require bacterial viability. However, the overall adhesion of Salmonella to both natural and synthetic leaf surfaces decreased in the cellulose mutant. This result emphasizes the strength of the model synthetic system we developed. A better understanding of Salmonella interaction with leaf surfaces could yield new directions for prevention methods. The findings in this research could assist in the development of such directions.</p>","PeriodicalId":12399,"journal":{"name":"Food microbiology","volume":"133 ","pages":"104893"},"PeriodicalIF":4.6000,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tomato leaf microstructure affects the adhesion and localization of Salmonella enterica as shown using biomimetics.\",\"authors\":\"Orian Dayan, Yulia Kroupitski, Tali Sayas, Shlomo Sela Saldinger, Maya Kleiman\",\"doi\":\"10.1016/j.fm.2025.104893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Non-typhoidal Salmonella enterica serovars are a major cause of diarrheal diseases worldwide and represent a significant health concern. Several Salmonella outbreaks worldwide originated from bacteria residing on plants, specifically on leaves. Understanding the adhesion and survival of Salmonella upon the leaf surface is, hence, of great importance. Among other factors involved in the localization and adhesion of Salmonella to the leaf surface, the surface microstructure did not receive significant attention. Here, we study the localization and adhesion of Salmonella to the surface of tomato leaves, with emphasis on the role of the leaf surface microstructure. To do so, we use biomimetics, a field in chemistry and material sciences aimed at mimicking biological systems. We formed synthetic replication of the leaf surface microstructure, to isolate the microstructure property from all other leaf properties. We found that the distribution of Salmonella upon the leaf surface is not random and there is a clear localization preference to the intercellular spaces and the trichomes. We found that this localization repeats in the synthetic system, suggesting this phenomenon is due to the microstructural features of the leaf. The localization of Salmonella on the trichome is independent of flagella, curli or cellulose, and does not require bacterial viability. However, the overall adhesion of Salmonella to both natural and synthetic leaf surfaces decreased in the cellulose mutant. This result emphasizes the strength of the model synthetic system we developed. A better understanding of Salmonella interaction with leaf surfaces could yield new directions for prevention methods. The findings in this research could assist in the development of such directions.</p>\",\"PeriodicalId\":12399,\"journal\":{\"name\":\"Food microbiology\",\"volume\":\"133 \",\"pages\":\"104893\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2026-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food microbiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.fm.2025.104893\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food microbiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.fm.2025.104893","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Tomato leaf microstructure affects the adhesion and localization of Salmonella enterica as shown using biomimetics.
Non-typhoidal Salmonella enterica serovars are a major cause of diarrheal diseases worldwide and represent a significant health concern. Several Salmonella outbreaks worldwide originated from bacteria residing on plants, specifically on leaves. Understanding the adhesion and survival of Salmonella upon the leaf surface is, hence, of great importance. Among other factors involved in the localization and adhesion of Salmonella to the leaf surface, the surface microstructure did not receive significant attention. Here, we study the localization and adhesion of Salmonella to the surface of tomato leaves, with emphasis on the role of the leaf surface microstructure. To do so, we use biomimetics, a field in chemistry and material sciences aimed at mimicking biological systems. We formed synthetic replication of the leaf surface microstructure, to isolate the microstructure property from all other leaf properties. We found that the distribution of Salmonella upon the leaf surface is not random and there is a clear localization preference to the intercellular spaces and the trichomes. We found that this localization repeats in the synthetic system, suggesting this phenomenon is due to the microstructural features of the leaf. The localization of Salmonella on the trichome is independent of flagella, curli or cellulose, and does not require bacterial viability. However, the overall adhesion of Salmonella to both natural and synthetic leaf surfaces decreased in the cellulose mutant. This result emphasizes the strength of the model synthetic system we developed. A better understanding of Salmonella interaction with leaf surfaces could yield new directions for prevention methods. The findings in this research could assist in the development of such directions.
期刊介绍:
Food Microbiology publishes original research articles, short communications, review papers, letters, news items and book reviews dealing with all aspects of the microbiology of foods. The editors aim to publish manuscripts of the highest quality which are both relevant and applicable to the broad field covered by the journal. Studies must be novel, have a clear connection to food microbiology, and be of general interest to the international community of food microbiologists. The editors make every effort to ensure rapid and fair reviews, resulting in timely publication of accepted manuscripts.