Saygın Bilican, Yara Nabawi, William Hongyu Zhang, Dunja Petrovic, Markus Wehrmann, Sara Muñoz-García, Seda Koyuncu, David Vilchez
{"title":"C9orf72引起als的突变导致核孔蛋白Nup107错定位和聚集到应激颗粒中。","authors":"Saygın Bilican, Yara Nabawi, William Hongyu Zhang, Dunja Petrovic, Markus Wehrmann, Sara Muñoz-García, Seda Koyuncu, David Vilchez","doi":"10.1002/1873-3468.70156","DOIUrl":null,"url":null,"abstract":"<p><p>Amyotrophic lateral sclerosis (ALS) is a fatal disorder caused by motor neuron degeneration. Hexanucleotide repeat expansions in the C9orf72 gene, the most common genetic cause of ALS (C9-ALS), drive toxicity through different mechanisms. These pathological changes include alterations in stress granules (SGs), ribonucleoprotein complexes formed under stress conditions. Here, we show that G3BP1, a core component of SGs, exhibits enhanced interaction with the nucleoporin Nup107 in motor neurons derived from patient iPSCs carrying C9orf72 mutations. Moreover, Nup107 colocalizes with SGs and aggregates in C9-ALS motor neurons. Notably, knockdown of npp-5, the Caenorhabditis elegans ortholog of Nup107, alleviates ALS-associated phenotypes in worm models, including reduced lifespan and impaired motility. Together, our findings provide insights into disease-related changes in C9-ALS pathogenesis.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"C9orf72 ALS-causing mutations lead to mislocalization and aggregation of nucleoporin Nup107 into stress granules.\",\"authors\":\"Saygın Bilican, Yara Nabawi, William Hongyu Zhang, Dunja Petrovic, Markus Wehrmann, Sara Muñoz-García, Seda Koyuncu, David Vilchez\",\"doi\":\"10.1002/1873-3468.70156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Amyotrophic lateral sclerosis (ALS) is a fatal disorder caused by motor neuron degeneration. Hexanucleotide repeat expansions in the C9orf72 gene, the most common genetic cause of ALS (C9-ALS), drive toxicity through different mechanisms. These pathological changes include alterations in stress granules (SGs), ribonucleoprotein complexes formed under stress conditions. Here, we show that G3BP1, a core component of SGs, exhibits enhanced interaction with the nucleoporin Nup107 in motor neurons derived from patient iPSCs carrying C9orf72 mutations. Moreover, Nup107 colocalizes with SGs and aggregates in C9-ALS motor neurons. Notably, knockdown of npp-5, the Caenorhabditis elegans ortholog of Nup107, alleviates ALS-associated phenotypes in worm models, including reduced lifespan and impaired motility. Together, our findings provide insights into disease-related changes in C9-ALS pathogenesis.</p>\",\"PeriodicalId\":12142,\"journal\":{\"name\":\"FEBS Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEBS Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/1873-3468.70156\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/1873-3468.70156","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
C9orf72 ALS-causing mutations lead to mislocalization and aggregation of nucleoporin Nup107 into stress granules.
Amyotrophic lateral sclerosis (ALS) is a fatal disorder caused by motor neuron degeneration. Hexanucleotide repeat expansions in the C9orf72 gene, the most common genetic cause of ALS (C9-ALS), drive toxicity through different mechanisms. These pathological changes include alterations in stress granules (SGs), ribonucleoprotein complexes formed under stress conditions. Here, we show that G3BP1, a core component of SGs, exhibits enhanced interaction with the nucleoporin Nup107 in motor neurons derived from patient iPSCs carrying C9orf72 mutations. Moreover, Nup107 colocalizes with SGs and aggregates in C9-ALS motor neurons. Notably, knockdown of npp-5, the Caenorhabditis elegans ortholog of Nup107, alleviates ALS-associated phenotypes in worm models, including reduced lifespan and impaired motility. Together, our findings provide insights into disease-related changes in C9-ALS pathogenesis.
期刊介绍:
FEBS Letters is one of the world''s leading journals in molecular biology and is renowned both for its quality of content and speed of production. Bringing together the most important developments in the molecular biosciences, FEBS Letters provides an international forum for Minireviews, Research Letters and Hypotheses that merit urgent publication.