Heru Syarli Lesmana, Ben Schroeder, Kyohei Marume, Patrick Rodrigues, Justin S Lawley
{"title":"验证肌肉氧合动力学预测有氧适能和运动过渡阈值。","authors":"Heru Syarli Lesmana, Ben Schroeder, Kyohei Marume, Patrick Rodrigues, Justin S Lawley","doi":"10.1113/EP092908","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to validate previously developed equations to predict maximal oxygen uptake ( <math> <semantics> <msub><mover><mi>V</mi> <mo>̇</mo></mover> <mrow><msub><mi>O</mi> <mn>2</mn></msub> <mi>max</mi></mrow> </msub> <annotation>${\\dot V_{{{\\mathrm{O}}_{\\mathrm{2}}}{\\mathrm{max}}}}$</annotation></semantics> </math> ) from near-infrared spectroscopy (NIRS) during and after a period of limb ischaemia. Moreover, NIRS recovery kinetics after steady-state exercise (SSE) could be used to monitor <math> <semantics> <msub><mover><mi>V</mi> <mo>̇</mo></mover> <mrow><msub><mi>O</mi> <mn>2</mn></msub> <mi>max</mi></mrow> </msub> <annotation>${\\dot V_{{{\\mathrm{O}}_{\\mathrm{2}}}{\\mathrm{max}}}}$</annotation></semantics> </math> and exercise intensity thresholds. Seventeen healthy adults completed a 3 min 300 mmHg pressure cuff occlusion to measure the occlusion slope, relative rate of muscle reoxygenation at 10 s (Rep 10s), baseline (R<sub>bl</sub>), peak (R<sub>peak</sub>) and area under the curve (AUC<sub>2min</sub>). SSE was performed at 100 W (SSE1) and 150 W (SSE2) to determine the relative rate of muscle reoxygenation (R1<sub>bl</sub> and R2<sub>bl</sub>). Thereafter, incremental maximal cycling was used to determine <math> <semantics> <msub><mover><mi>V</mi> <mo>̇</mo></mover> <mrow><msub><mi>O</mi> <mn>2</mn></msub> <mi>max</mi></mrow> </msub> <annotation>${\\dot V_{{{\\mathrm{O}}_{\\mathrm{2}}}{\\mathrm{max}}}}$</annotation></semantics> </math> , ventilatory thresholds (VTs) and gross efficiencies (GEs). The values of Rep 10s (r = 0.61, p = 0.02), R<sub>bl</sub> (r = 0.53, p = 0.04), R<sub>peak</sub> (r = 0.60, p = 0.02), AUC<sub>2min</sub> (r = 0.67, p < 0.01) and occlusion slope (r = -0.68, p = 0.005) were correlated with absolute <math> <semantics> <msub><mover><mi>V</mi> <mo>̇</mo></mover> <mrow><msub><mi>O</mi> <mn>2</mn></msub> <mi>max</mi></mrow> </msub> <annotation>${\\dot V_{{{\\mathrm{O}}_{\\mathrm{2}}}{\\mathrm{max}}}}$</annotation></semantics> </math> . After steady-state cycling, SSE1 R<sub>bl</sub> was correlated with absolute <math> <semantics> <msub><mover><mi>V</mi> <mo>̇</mo></mover> <mrow><msub><mi>O</mi> <mn>2</mn></msub> <mi>max</mi></mrow> </msub> <annotation>${\\dot V_{{{\\mathrm{O}}_{\\mathrm{2}}}{\\mathrm{max}}}}$</annotation></semantics> </math> (r = 0.67, p = 0.01) and relative <math> <semantics> <msub><mover><mi>V</mi> <mo>̇</mo></mover> <mrow><msub><mi>O</mi> <mn>2</mn></msub> <mi>max</mi></mrow> </msub> <annotation>${\\dot V_{{{\\mathrm{O}}_{\\mathrm{2}}}{\\mathrm{max}}}}$</annotation></semantics> </math> (r = 0.60, p = 0.02), in addition to absolute VT1 (r = 0.66, p = 0.01) and relative VT1 (r = 0.61 p = 0.02). The SSE2 R<sub>bl</sub> was correlated with absolute <math> <semantics> <msub><mover><mi>V</mi> <mo>̇</mo></mover> <mrow><msub><mi>O</mi> <mn>2</mn></msub> <mi>max</mi></mrow> </msub> <annotation>${\\dot V_{{{\\mathrm{O}}_{\\mathrm{2}}}{\\mathrm{max}}}}$</annotation></semantics> </math> (r = 0.58, p = 0.02), relative <math> <semantics> <msub><mover><mi>V</mi> <mo>̇</mo></mover> <mrow><msub><mi>O</mi> <mn>2</mn></msub> <mi>max</mi></mrow> </msub> <annotation>${\\dot V_{{{\\mathrm{O}}_{\\mathrm{2}}}{\\mathrm{max}}}}$</annotation></semantics> </math> (r = 0.63, p = 0.02), absolute VT2 (r = 0.56, p = 0.03), relative VT2 (r = 0.62, p = 0.01) and GE2 (r = 0.56, p = 0.03). Using previously defined prediction equations, <math> <semantics> <msub><mover><mi>V</mi> <mo>̇</mo></mover> <mrow><msub><mi>O</mi> <mn>2</mn></msub> <mi>max</mi></mrow> </msub> <annotation>${\\dot V_{{{\\mathrm{O}}_{\\mathrm{2}}}{\\mathrm{max}}}}$</annotation></semantics> </math> could be predicted with a modest degree of typical error (Rep 10s, 521 mL min<sup>-1</sup>; R<sub>peak</sub>, 525 mL min<sup>-1</sup>; slope, 393 mL min<sup>-1</sup>). NIRS kinetic profiles during or after a period of ischaemia or after SSE are related to <math> <semantics> <msub><mover><mi>V</mi> <mo>̇</mo></mover> <mrow><msub><mi>O</mi> <mn>2</mn></msub> <mi>max</mi></mrow> </msub> <annotation>${\\dot V_{{{\\mathrm{O}}_{\\mathrm{2}}}{\\mathrm{max}}}}$</annotation></semantics> </math> and exercise intensity thresholds. Nonetheless, their predictive validity is limited to a broad estimate of the aerobic fitness of an individual.</p>","PeriodicalId":12092,"journal":{"name":"Experimental Physiology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validation of muscle oxygenation kinetics to predict aerobic fitness and exercise transition thresholds.\",\"authors\":\"Heru Syarli Lesmana, Ben Schroeder, Kyohei Marume, Patrick Rodrigues, Justin S Lawley\",\"doi\":\"10.1113/EP092908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of this study was to validate previously developed equations to predict maximal oxygen uptake ( <math> <semantics> <msub><mover><mi>V</mi> <mo>̇</mo></mover> <mrow><msub><mi>O</mi> <mn>2</mn></msub> <mi>max</mi></mrow> </msub> <annotation>${\\\\dot V_{{{\\\\mathrm{O}}_{\\\\mathrm{2}}}{\\\\mathrm{max}}}}$</annotation></semantics> </math> ) from near-infrared spectroscopy (NIRS) during and after a period of limb ischaemia. Moreover, NIRS recovery kinetics after steady-state exercise (SSE) could be used to monitor <math> <semantics> <msub><mover><mi>V</mi> <mo>̇</mo></mover> <mrow><msub><mi>O</mi> <mn>2</mn></msub> <mi>max</mi></mrow> </msub> <annotation>${\\\\dot V_{{{\\\\mathrm{O}}_{\\\\mathrm{2}}}{\\\\mathrm{max}}}}$</annotation></semantics> </math> and exercise intensity thresholds. Seventeen healthy adults completed a 3 min 300 mmHg pressure cuff occlusion to measure the occlusion slope, relative rate of muscle reoxygenation at 10 s (Rep 10s), baseline (R<sub>bl</sub>), peak (R<sub>peak</sub>) and area under the curve (AUC<sub>2min</sub>). SSE was performed at 100 W (SSE1) and 150 W (SSE2) to determine the relative rate of muscle reoxygenation (R1<sub>bl</sub> and R2<sub>bl</sub>). Thereafter, incremental maximal cycling was used to determine <math> <semantics> <msub><mover><mi>V</mi> <mo>̇</mo></mover> <mrow><msub><mi>O</mi> <mn>2</mn></msub> <mi>max</mi></mrow> </msub> <annotation>${\\\\dot V_{{{\\\\mathrm{O}}_{\\\\mathrm{2}}}{\\\\mathrm{max}}}}$</annotation></semantics> </math> , ventilatory thresholds (VTs) and gross efficiencies (GEs). The values of Rep 10s (r = 0.61, p = 0.02), R<sub>bl</sub> (r = 0.53, p = 0.04), R<sub>peak</sub> (r = 0.60, p = 0.02), AUC<sub>2min</sub> (r = 0.67, p < 0.01) and occlusion slope (r = -0.68, p = 0.005) were correlated with absolute <math> <semantics> <msub><mover><mi>V</mi> <mo>̇</mo></mover> <mrow><msub><mi>O</mi> <mn>2</mn></msub> <mi>max</mi></mrow> </msub> <annotation>${\\\\dot V_{{{\\\\mathrm{O}}_{\\\\mathrm{2}}}{\\\\mathrm{max}}}}$</annotation></semantics> </math> . After steady-state cycling, SSE1 R<sub>bl</sub> was correlated with absolute <math> <semantics> <msub><mover><mi>V</mi> <mo>̇</mo></mover> <mrow><msub><mi>O</mi> <mn>2</mn></msub> <mi>max</mi></mrow> </msub> <annotation>${\\\\dot V_{{{\\\\mathrm{O}}_{\\\\mathrm{2}}}{\\\\mathrm{max}}}}$</annotation></semantics> </math> (r = 0.67, p = 0.01) and relative <math> <semantics> <msub><mover><mi>V</mi> <mo>̇</mo></mover> <mrow><msub><mi>O</mi> <mn>2</mn></msub> <mi>max</mi></mrow> </msub> <annotation>${\\\\dot V_{{{\\\\mathrm{O}}_{\\\\mathrm{2}}}{\\\\mathrm{max}}}}$</annotation></semantics> </math> (r = 0.60, p = 0.02), in addition to absolute VT1 (r = 0.66, p = 0.01) and relative VT1 (r = 0.61 p = 0.02). The SSE2 R<sub>bl</sub> was correlated with absolute <math> <semantics> <msub><mover><mi>V</mi> <mo>̇</mo></mover> <mrow><msub><mi>O</mi> <mn>2</mn></msub> <mi>max</mi></mrow> </msub> <annotation>${\\\\dot V_{{{\\\\mathrm{O}}_{\\\\mathrm{2}}}{\\\\mathrm{max}}}}$</annotation></semantics> </math> (r = 0.58, p = 0.02), relative <math> <semantics> <msub><mover><mi>V</mi> <mo>̇</mo></mover> <mrow><msub><mi>O</mi> <mn>2</mn></msub> <mi>max</mi></mrow> </msub> <annotation>${\\\\dot V_{{{\\\\mathrm{O}}_{\\\\mathrm{2}}}{\\\\mathrm{max}}}}$</annotation></semantics> </math> (r = 0.63, p = 0.02), absolute VT2 (r = 0.56, p = 0.03), relative VT2 (r = 0.62, p = 0.01) and GE2 (r = 0.56, p = 0.03). Using previously defined prediction equations, <math> <semantics> <msub><mover><mi>V</mi> <mo>̇</mo></mover> <mrow><msub><mi>O</mi> <mn>2</mn></msub> <mi>max</mi></mrow> </msub> <annotation>${\\\\dot V_{{{\\\\mathrm{O}}_{\\\\mathrm{2}}}{\\\\mathrm{max}}}}$</annotation></semantics> </math> could be predicted with a modest degree of typical error (Rep 10s, 521 mL min<sup>-1</sup>; R<sub>peak</sub>, 525 mL min<sup>-1</sup>; slope, 393 mL min<sup>-1</sup>). NIRS kinetic profiles during or after a period of ischaemia or after SSE are related to <math> <semantics> <msub><mover><mi>V</mi> <mo>̇</mo></mover> <mrow><msub><mi>O</mi> <mn>2</mn></msub> <mi>max</mi></mrow> </msub> <annotation>${\\\\dot V_{{{\\\\mathrm{O}}_{\\\\mathrm{2}}}{\\\\mathrm{max}}}}$</annotation></semantics> </math> and exercise intensity thresholds. Nonetheless, their predictive validity is limited to a broad estimate of the aerobic fitness of an individual.</p>\",\"PeriodicalId\":12092,\"journal\":{\"name\":\"Experimental Physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1113/EP092908\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/EP092908","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
本研究的目的是验证先前开发的方程,通过近红外光谱(NIRS)预测肢体缺血期间和之后的最大摄氧量(V氧2 max ${\dot V_{{\ mathm {O}} {\ mathm {2}}}{\ mathm {max}}}}$)。此外,稳态运动(SSE)后NIRS恢复动力学可用于监测v_2max ${\dot V_{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$和运动强度阈值。17名健康成人完成3分钟300 mmHg压力袖带闭塞,测量闭塞斜率、10s时肌肉再氧合的相对速率(Rep 10s)、基线(Rbl)、峰值(Rpeak)和曲线下面积(AUC2min)。在100 W (SSE1)和150 W (SSE2)下进行SSE,以测定肌肉再氧化的相对速率(R1bl和R2bl)。随后,采用增量最大循环法测定vo2 max ${\dot V_{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$、通气阈值(vt)和总效率(GEs)。的值代表10年代(r = 0.61, p = 0.02),家庭成员(r = 0.53, p = 0.04), Rpeak (r = 0.60, p = 0.02), AUC2min (r = 0.67, p V̇O 2马克斯${\点V_ {{{\ mathrm {O}} _ {\ mathrm {2}}} {\ mathrm{马克斯}}}}$。稳态循环后,SSE1 Rbl除与绝对VT1 (r = 0.66, p = 0.01)和相对VT1 (r = 0.61, p = 0.02)相关外,还与绝对v_2 max ${\dot V_{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$相关(r = 0.67, p = 0.01)和相对v_2 max ${\ mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$相关(r = 0.60, p = 0.02)。SSE2的家庭成员是与绝对V̇O 2马克斯${\点V_ {{{\ mathrm {O}} _ {\ mathrm {2}}} {\ mathrm{马克斯}}}}$ (r = 0.58, p = 0.02),相对V̇O 2马克斯${\点V_ {{{\ mathrm {O}} _ {\ mathrm {2}}} {\ mathrm{马克斯}}}}$ (r = 0.63, p = 0.02),绝对VT2 (r = 0.56, p = 0.03),相对VT2 (r = 0.62, p = 0.01)和GE2 (r = 0.56, p = 0.03)。使用先前定义的预测方程,可以以中等程度的典型误差(Rep 10s, 521 mL min-1; Rpeak, 525 mL min-1; slope, 393 mL min-1)预测V²o2 max ${\dot V_{{\mathrm{O}} {\mathrm{O}} {\mathrm{max}}}}$)。缺血期间或缺血后或SSE后的NIRS动力学谱与v_2 max ${\dot V_{{\ mathm {O}} {\ mathm {2}}}{\ mathm {max}}}}$和运动强度阈值有关。尽管如此,它们的预测有效性仅限于对个体有氧适应性的广泛估计。
Validation of muscle oxygenation kinetics to predict aerobic fitness and exercise transition thresholds.
The aim of this study was to validate previously developed equations to predict maximal oxygen uptake ( ) from near-infrared spectroscopy (NIRS) during and after a period of limb ischaemia. Moreover, NIRS recovery kinetics after steady-state exercise (SSE) could be used to monitor and exercise intensity thresholds. Seventeen healthy adults completed a 3 min 300 mmHg pressure cuff occlusion to measure the occlusion slope, relative rate of muscle reoxygenation at 10 s (Rep 10s), baseline (Rbl), peak (Rpeak) and area under the curve (AUC2min). SSE was performed at 100 W (SSE1) and 150 W (SSE2) to determine the relative rate of muscle reoxygenation (R1bl and R2bl). Thereafter, incremental maximal cycling was used to determine , ventilatory thresholds (VTs) and gross efficiencies (GEs). The values of Rep 10s (r = 0.61, p = 0.02), Rbl (r = 0.53, p = 0.04), Rpeak (r = 0.60, p = 0.02), AUC2min (r = 0.67, p < 0.01) and occlusion slope (r = -0.68, p = 0.005) were correlated with absolute . After steady-state cycling, SSE1 Rbl was correlated with absolute (r = 0.67, p = 0.01) and relative (r = 0.60, p = 0.02), in addition to absolute VT1 (r = 0.66, p = 0.01) and relative VT1 (r = 0.61 p = 0.02). The SSE2 Rbl was correlated with absolute (r = 0.58, p = 0.02), relative (r = 0.63, p = 0.02), absolute VT2 (r = 0.56, p = 0.03), relative VT2 (r = 0.62, p = 0.01) and GE2 (r = 0.56, p = 0.03). Using previously defined prediction equations, could be predicted with a modest degree of typical error (Rep 10s, 521 mL min-1; Rpeak, 525 mL min-1; slope, 393 mL min-1). NIRS kinetic profiles during or after a period of ischaemia or after SSE are related to and exercise intensity thresholds. Nonetheless, their predictive validity is limited to a broad estimate of the aerobic fitness of an individual.
期刊介绍:
Experimental Physiology publishes research papers that report novel insights into homeostatic and adaptive responses in health, as well as those that further our understanding of pathophysiological mechanisms in disease. We encourage papers that embrace the journal’s orientation of translation and integration, including studies of the adaptive responses to exercise, acute and chronic environmental stressors, growth and aging, and diseases where integrative homeostatic mechanisms play a key role in the response to and evolution of the disease process. Examples of such diseases include hypertension, heart failure, hypoxic lung disease, endocrine and neurological disorders. We are also keen to publish research that has a translational aspect or clinical application. Comparative physiology work that can be applied to aid the understanding human physiology is also encouraged.
Manuscripts that report the use of bioinformatic, genomic, molecular, proteomic and cellular techniques to provide novel insights into integrative physiological and pathophysiological mechanisms are welcomed.