Sumona Koley, Gagan Deep Singh, Meena Khwairakpam, Ajay S Kalamdhad
{"title":"可持续水处理:利用饮用水处理污泥改善水质。","authors":"Sumona Koley, Gagan Deep Singh, Meena Khwairakpam, Ajay S Kalamdhad","doi":"10.1080/09593330.2025.2547045","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a novel and sustainable approach to enhance drinking water treatment by transforming Drinking Water Treatment Sludge (DWTS), a challenging waste byproduct, into a valuable resource. We investigated the combined coagulation-adsorption process, utilising DWTS as an adsorbent alongside alum coagulant, to address the persistent issue of dissolved natural organic matter (NOM) and turbidity removal. Our findings demonstrate that adding DWTS at a dose of 1.5 g/L effectively achieved simultaneous and significant removal of both NOM and turbidity. This integration remarkably reduced alum consumption by 46.15%, leading to more sustainable chemical usage. Furthermore, the presence of DWTS improved floc properties, evidenced by a substantial decrease in the sludge volume index (SVI) from 166.60 mL/mg to 70.40 mL/mg, and an 8.33% increase in the interface velocity of the formed flocs. This study uniquely highlights the dual benefit of DWTS in both enhancing coagulation efficiency and acting as an effective adsorbent. The combined process also significantly reduced the potential for trihalomethane formation (THMFP) by approximately 77.71%, directly addressing a critical public health concern related to disinfection by-products. This work establishes a robust framework for a circular economy in water treatment, offering a highly efficient and environmentally sound method for mitigating NOM and turbidity while valorising a waste stream.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1-18"},"PeriodicalIF":2.0000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable water treatment: leveraging drinking water treatment sludge for enhanced water quality.\",\"authors\":\"Sumona Koley, Gagan Deep Singh, Meena Khwairakpam, Ajay S Kalamdhad\",\"doi\":\"10.1080/09593330.2025.2547045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study presents a novel and sustainable approach to enhance drinking water treatment by transforming Drinking Water Treatment Sludge (DWTS), a challenging waste byproduct, into a valuable resource. We investigated the combined coagulation-adsorption process, utilising DWTS as an adsorbent alongside alum coagulant, to address the persistent issue of dissolved natural organic matter (NOM) and turbidity removal. Our findings demonstrate that adding DWTS at a dose of 1.5 g/L effectively achieved simultaneous and significant removal of both NOM and turbidity. This integration remarkably reduced alum consumption by 46.15%, leading to more sustainable chemical usage. Furthermore, the presence of DWTS improved floc properties, evidenced by a substantial decrease in the sludge volume index (SVI) from 166.60 mL/mg to 70.40 mL/mg, and an 8.33% increase in the interface velocity of the formed flocs. This study uniquely highlights the dual benefit of DWTS in both enhancing coagulation efficiency and acting as an effective adsorbent. The combined process also significantly reduced the potential for trihalomethane formation (THMFP) by approximately 77.71%, directly addressing a critical public health concern related to disinfection by-products. This work establishes a robust framework for a circular economy in water treatment, offering a highly efficient and environmentally sound method for mitigating NOM and turbidity while valorising a waste stream.</p>\",\"PeriodicalId\":12009,\"journal\":{\"name\":\"Environmental Technology\",\"volume\":\" \",\"pages\":\"1-18\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/09593330.2025.2547045\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2025.2547045","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Sustainable water treatment: leveraging drinking water treatment sludge for enhanced water quality.
This study presents a novel and sustainable approach to enhance drinking water treatment by transforming Drinking Water Treatment Sludge (DWTS), a challenging waste byproduct, into a valuable resource. We investigated the combined coagulation-adsorption process, utilising DWTS as an adsorbent alongside alum coagulant, to address the persistent issue of dissolved natural organic matter (NOM) and turbidity removal. Our findings demonstrate that adding DWTS at a dose of 1.5 g/L effectively achieved simultaneous and significant removal of both NOM and turbidity. This integration remarkably reduced alum consumption by 46.15%, leading to more sustainable chemical usage. Furthermore, the presence of DWTS improved floc properties, evidenced by a substantial decrease in the sludge volume index (SVI) from 166.60 mL/mg to 70.40 mL/mg, and an 8.33% increase in the interface velocity of the formed flocs. This study uniquely highlights the dual benefit of DWTS in both enhancing coagulation efficiency and acting as an effective adsorbent. The combined process also significantly reduced the potential for trihalomethane formation (THMFP) by approximately 77.71%, directly addressing a critical public health concern related to disinfection by-products. This work establishes a robust framework for a circular economy in water treatment, offering a highly efficient and environmentally sound method for mitigating NOM and turbidity while valorising a waste stream.
期刊介绍:
Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies.
Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months.
Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current