Ricardo Martuci, Susana João Oliveira, Mateus Martuci, José Reis-Campos, Maria Helena Figueiral
{"title":"石墨烯在牙科中的抗菌作用:范围综述。","authors":"Ricardo Martuci, Susana João Oliveira, Mateus Martuci, José Reis-Campos, Maria Helena Figueiral","doi":"10.3390/dj13080355","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: The functionalization of various forms of graphene, such as graphene nanoplatelets, graphene oxide, and reduced graphene oxide, in biomaterials is a promising strategy in dentistry, particularly regarding their antimicrobial potential. However, conclusive studies on the toxicity and biocompatibility of graphene-based materials remain limited, and standardized guidelines for their production, handling, and dental applications are still lacking. This scoping review aims to map the available studies on various types of graphene, synthesize evidence on their antimicrobial effectiveness, and describe the main biological responses when functionalized in dental biomaterials. <b>Methods</b>: An electronic search was conducted in the Clarivate, PubMed, and Scopus databases using the descriptors as follows: 'graphene' AND 'antimicrobial effect' AND 'bactericidal effect' AND ('graphene oxide' OR 'dental biofilm' OR 'antibacterial properties' OR 'dental materials'). Article screening and eligibility assessment were performed based on predefined inclusion and exclusion criteria, following the PRISMA-ScR guidelines. <b>Results</b>: The search identified 793 articles. After removing duplicates, applying the eligibility criteria, and performing a full-text analysis of 64 articles, 21 studies were included in the review. Graphene oxide, particularly at low concentrations, was the most commonly studied graphene variant, demonstrating significant antimicrobial efficacy against <i>S. mutans</i>, <i>S. faecalis</i>, <i>E. coli</i>, <i>P. aeruginosa</i>, and <i>C. albicans</i>. Both mechanical and chemical mechanisms have been linked to the biological responses of graphene-doped biomaterials. The biocompatibility and cytotoxicity of these compounds remain controversial, with some studies reporting favorable outcomes, while others raise significant concerns. <b>Conclusions</b>: Graphene shows great promise as an antimicrobial agent in dental biomaterials. Despite encouraging results, more in vitro and in vivo studies are needed to better understand its biocompatibility and cytotoxicity in dental applications. Additionally, standardized production protocols, clearly defined clinical applications in dentistry, and regulatory guidelines from the World Health Organization concerning handling procedures and occupational risks remain necessary.</p>","PeriodicalId":11269,"journal":{"name":"Dentistry Journal","volume":"13 8","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12384847/pdf/","citationCount":"0","resultStr":"{\"title\":\"Antimicrobial Effect of Graphene in Dentistry: A Scoping Review.\",\"authors\":\"Ricardo Martuci, Susana João Oliveira, Mateus Martuci, José Reis-Campos, Maria Helena Figueiral\",\"doi\":\"10.3390/dj13080355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background/Objectives</b>: The functionalization of various forms of graphene, such as graphene nanoplatelets, graphene oxide, and reduced graphene oxide, in biomaterials is a promising strategy in dentistry, particularly regarding their antimicrobial potential. However, conclusive studies on the toxicity and biocompatibility of graphene-based materials remain limited, and standardized guidelines for their production, handling, and dental applications are still lacking. This scoping review aims to map the available studies on various types of graphene, synthesize evidence on their antimicrobial effectiveness, and describe the main biological responses when functionalized in dental biomaterials. <b>Methods</b>: An electronic search was conducted in the Clarivate, PubMed, and Scopus databases using the descriptors as follows: 'graphene' AND 'antimicrobial effect' AND 'bactericidal effect' AND ('graphene oxide' OR 'dental biofilm' OR 'antibacterial properties' OR 'dental materials'). Article screening and eligibility assessment were performed based on predefined inclusion and exclusion criteria, following the PRISMA-ScR guidelines. <b>Results</b>: The search identified 793 articles. After removing duplicates, applying the eligibility criteria, and performing a full-text analysis of 64 articles, 21 studies were included in the review. Graphene oxide, particularly at low concentrations, was the most commonly studied graphene variant, demonstrating significant antimicrobial efficacy against <i>S. mutans</i>, <i>S. faecalis</i>, <i>E. coli</i>, <i>P. aeruginosa</i>, and <i>C. albicans</i>. Both mechanical and chemical mechanisms have been linked to the biological responses of graphene-doped biomaterials. The biocompatibility and cytotoxicity of these compounds remain controversial, with some studies reporting favorable outcomes, while others raise significant concerns. <b>Conclusions</b>: Graphene shows great promise as an antimicrobial agent in dental biomaterials. Despite encouraging results, more in vitro and in vivo studies are needed to better understand its biocompatibility and cytotoxicity in dental applications. Additionally, standardized production protocols, clearly defined clinical applications in dentistry, and regulatory guidelines from the World Health Organization concerning handling procedures and occupational risks remain necessary.</p>\",\"PeriodicalId\":11269,\"journal\":{\"name\":\"Dentistry Journal\",\"volume\":\"13 8\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12384847/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dentistry Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/dj13080355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dentistry Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dj13080355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Antimicrobial Effect of Graphene in Dentistry: A Scoping Review.
Background/Objectives: The functionalization of various forms of graphene, such as graphene nanoplatelets, graphene oxide, and reduced graphene oxide, in biomaterials is a promising strategy in dentistry, particularly regarding their antimicrobial potential. However, conclusive studies on the toxicity and biocompatibility of graphene-based materials remain limited, and standardized guidelines for their production, handling, and dental applications are still lacking. This scoping review aims to map the available studies on various types of graphene, synthesize evidence on their antimicrobial effectiveness, and describe the main biological responses when functionalized in dental biomaterials. Methods: An electronic search was conducted in the Clarivate, PubMed, and Scopus databases using the descriptors as follows: 'graphene' AND 'antimicrobial effect' AND 'bactericidal effect' AND ('graphene oxide' OR 'dental biofilm' OR 'antibacterial properties' OR 'dental materials'). Article screening and eligibility assessment were performed based on predefined inclusion and exclusion criteria, following the PRISMA-ScR guidelines. Results: The search identified 793 articles. After removing duplicates, applying the eligibility criteria, and performing a full-text analysis of 64 articles, 21 studies were included in the review. Graphene oxide, particularly at low concentrations, was the most commonly studied graphene variant, demonstrating significant antimicrobial efficacy against S. mutans, S. faecalis, E. coli, P. aeruginosa, and C. albicans. Both mechanical and chemical mechanisms have been linked to the biological responses of graphene-doped biomaterials. The biocompatibility and cytotoxicity of these compounds remain controversial, with some studies reporting favorable outcomes, while others raise significant concerns. Conclusions: Graphene shows great promise as an antimicrobial agent in dental biomaterials. Despite encouraging results, more in vitro and in vivo studies are needed to better understand its biocompatibility and cytotoxicity in dental applications. Additionally, standardized production protocols, clearly defined clinical applications in dentistry, and regulatory guidelines from the World Health Organization concerning handling procedures and occupational risks remain necessary.