综合微生物组数据分析揭示了ICU患者潜在的肺炎微生物生物标志物:机器学习方法。

IF 2.6 3区 生物学 Q3 MICROBIOLOGY
Pownraj Brindangnanam, Mohane Selvaraj Coumar
{"title":"综合微生物组数据分析揭示了ICU患者潜在的肺炎微生物生物标志物:机器学习方法。","authors":"Pownraj Brindangnanam, Mohane Selvaraj Coumar","doi":"10.1007/s00284-025-04464-y","DOIUrl":null,"url":null,"abstract":"<p><p>The human microbiome is pivotal in maintaining health and managing diseases. By examining the core microbiome in intensive care units (ICU) patients with pneumonia, we can gain valuable insights into the microbial communities associated with disease conditions. Pneumonia is the second most common infection in ICU settings, and recent research has highlighted the significance of endotracheal aspirate (ETA) microbiota in influencing pneumonia. Analysis of 16S rRNA sequencing data from lung microbiota of ICU patients revealed Pseudomonas as a key microbial biomarker, with machine learning model (xgbTree) achieving high predictive accuracy (prAUC: 0.98 and 0.7 log loss). Functional profile analysis revealed that the ATP-binding cassette (ABC) transporters and tetracycline-resistant ribosomal protection (Tet RPPs) proteins were possible molecular biomarkers that can be targeted to address the abundant pathogenic microbiome in pneumonia patients. These findings provide critical insights into pneumonia-specific microbiome signatures, highlighting Pseudomonas as a diagnostic marker and resistance-associated functional pathways as potential intervention targets. This study contributes to the development of precision medicine strategies for pneumonia management in ICU settings.</p>","PeriodicalId":11360,"journal":{"name":"Current Microbiology","volume":"82 10","pages":"483"},"PeriodicalIF":2.6000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated Microbiome Data Analysis Reveals Potential Pneumonia Microbial Biomarkers in ICU Patients: A Machine Learning Approach.\",\"authors\":\"Pownraj Brindangnanam, Mohane Selvaraj Coumar\",\"doi\":\"10.1007/s00284-025-04464-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The human microbiome is pivotal in maintaining health and managing diseases. By examining the core microbiome in intensive care units (ICU) patients with pneumonia, we can gain valuable insights into the microbial communities associated with disease conditions. Pneumonia is the second most common infection in ICU settings, and recent research has highlighted the significance of endotracheal aspirate (ETA) microbiota in influencing pneumonia. Analysis of 16S rRNA sequencing data from lung microbiota of ICU patients revealed Pseudomonas as a key microbial biomarker, with machine learning model (xgbTree) achieving high predictive accuracy (prAUC: 0.98 and 0.7 log loss). Functional profile analysis revealed that the ATP-binding cassette (ABC) transporters and tetracycline-resistant ribosomal protection (Tet RPPs) proteins were possible molecular biomarkers that can be targeted to address the abundant pathogenic microbiome in pneumonia patients. These findings provide critical insights into pneumonia-specific microbiome signatures, highlighting Pseudomonas as a diagnostic marker and resistance-associated functional pathways as potential intervention targets. This study contributes to the development of precision medicine strategies for pneumonia management in ICU settings.</p>\",\"PeriodicalId\":11360,\"journal\":{\"name\":\"Current Microbiology\",\"volume\":\"82 10\",\"pages\":\"483\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00284-025-04464-y\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00284-025-04464-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人类微生物组在维持健康和控制疾病方面起着关键作用。通过检查重症监护病房(ICU)肺炎患者的核心微生物组,我们可以获得与疾病状况相关的微生物群落的宝贵见解。肺炎是ICU环境中第二大常见感染,最近的研究强调了气管内吸入物(ETA)微生物群对肺炎的影响。通过对ICU患者肺微生物群16S rRNA测序数据的分析,发现假单胞菌是关键的微生物生物标志物,机器学习模型(xgbTree)具有较高的预测精度(prAUC: 0.98, log loss: 0.7)。功能谱分析显示,atp结合盒(ABC)转运蛋白和四环素耐药核糖体保护蛋白(Tet RPPs)可能是针对肺炎患者丰富的致病微生物群的分子生物标志物。这些发现为肺炎特异性微生物组特征提供了重要见解,突出了假单胞菌作为诊断标志物和耐药性相关功能途径作为潜在干预靶点。本研究有助于在ICU设置肺炎管理的精准医学策略的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated Microbiome Data Analysis Reveals Potential Pneumonia Microbial Biomarkers in ICU Patients: A Machine Learning Approach.

The human microbiome is pivotal in maintaining health and managing diseases. By examining the core microbiome in intensive care units (ICU) patients with pneumonia, we can gain valuable insights into the microbial communities associated with disease conditions. Pneumonia is the second most common infection in ICU settings, and recent research has highlighted the significance of endotracheal aspirate (ETA) microbiota in influencing pneumonia. Analysis of 16S rRNA sequencing data from lung microbiota of ICU patients revealed Pseudomonas as a key microbial biomarker, with machine learning model (xgbTree) achieving high predictive accuracy (prAUC: 0.98 and 0.7 log loss). Functional profile analysis revealed that the ATP-binding cassette (ABC) transporters and tetracycline-resistant ribosomal protection (Tet RPPs) proteins were possible molecular biomarkers that can be targeted to address the abundant pathogenic microbiome in pneumonia patients. These findings provide critical insights into pneumonia-specific microbiome signatures, highlighting Pseudomonas as a diagnostic marker and resistance-associated functional pathways as potential intervention targets. This study contributes to the development of precision medicine strategies for pneumonia management in ICU settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Microbiology
Current Microbiology 生物-微生物学
CiteScore
4.80
自引率
3.80%
发文量
380
审稿时长
2.5 months
期刊介绍: Current Microbiology is a well-established journal that publishes articles in all aspects of microbial cells and the interactions between the microorganisms, their hosts and the environment. Current Microbiology publishes original research articles, short communications, reviews and letters to the editor, spanning the following areas: physiology, biochemistry, genetics, genomics, biotechnology, ecology, evolution, morphology, taxonomy, diagnostic methods, medical and clinical microbiology and immunology as applied to microorganisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信