Gennaro Musella, Stefania Cantore, Maria Eleonora Bizzoca, Mario Dioguardi, Rossella Intini, Lorenzo Lo Muzio, Federico Moramarco, Francesco Pettini, Andrea Ballini
{"title":"阴影和厚度对儿童修复体中低粘度体积填充复合材料聚合的影响:一项体外研究。","authors":"Gennaro Musella, Stefania Cantore, Maria Eleonora Bizzoca, Mario Dioguardi, Rossella Intini, Lorenzo Lo Muzio, Federico Moramarco, Francesco Pettini, Andrea Ballini","doi":"10.3390/dj13080352","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> This study aimed to investigate the influence of shade and thickness on the polymerization of SDR<sup>®</sup> flow+, a low-viscosity bulk-fill composite, by assessing its degree of conversion (DC). <b>Methods:</b> An in vitro study was conducted using SDR<sup>®</sup> flow+ composite resin. Specimens were prepared at two thicknesses (2 mm and 4 mm) and four shades (Universal, A1, A2, A3). Polymerization was performed using a high-intensity LED curing unit. The DC was assessed using Fourier-transform infrared spectroscopy (ATR-FTIR). <b>Results:</b> Both shade and thickness significantly influenced DC. Thicker specimens (4 mm) exhibited reduced polymerization compared to thinner specimens (2 mm). Darker shades, particularly A3, demonstrated the lowest DC values due to their higher chroma, which limits light penetration. In contrast, the Universal shade achieved higher DC values, even at increased depths, likely due to its greater translucency. <b>Conclusions</b>: Shade and thickness play a critical role in the polymerization of bulk-fill composites. Ensuring adequate polymerization is essential for the longevity of pediatric restorations. Further in vivo research is needed to confirm these findings and assess their clinical implications.</p>","PeriodicalId":11269,"journal":{"name":"Dentistry Journal","volume":"13 8","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12385521/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impact of Shades and Thickness on the Polymerization of Low-Viscosity Bulk-Fill Composites in Pediatric Restorations: An In Vitro Study.\",\"authors\":\"Gennaro Musella, Stefania Cantore, Maria Eleonora Bizzoca, Mario Dioguardi, Rossella Intini, Lorenzo Lo Muzio, Federico Moramarco, Francesco Pettini, Andrea Ballini\",\"doi\":\"10.3390/dj13080352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background/Objectives:</b> This study aimed to investigate the influence of shade and thickness on the polymerization of SDR<sup>®</sup> flow+, a low-viscosity bulk-fill composite, by assessing its degree of conversion (DC). <b>Methods:</b> An in vitro study was conducted using SDR<sup>®</sup> flow+ composite resin. Specimens were prepared at two thicknesses (2 mm and 4 mm) and four shades (Universal, A1, A2, A3). Polymerization was performed using a high-intensity LED curing unit. The DC was assessed using Fourier-transform infrared spectroscopy (ATR-FTIR). <b>Results:</b> Both shade and thickness significantly influenced DC. Thicker specimens (4 mm) exhibited reduced polymerization compared to thinner specimens (2 mm). Darker shades, particularly A3, demonstrated the lowest DC values due to their higher chroma, which limits light penetration. In contrast, the Universal shade achieved higher DC values, even at increased depths, likely due to its greater translucency. <b>Conclusions</b>: Shade and thickness play a critical role in the polymerization of bulk-fill composites. Ensuring adequate polymerization is essential for the longevity of pediatric restorations. Further in vivo research is needed to confirm these findings and assess their clinical implications.</p>\",\"PeriodicalId\":11269,\"journal\":{\"name\":\"Dentistry Journal\",\"volume\":\"13 8\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12385521/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dentistry Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/dj13080352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dentistry Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dj13080352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Impact of Shades and Thickness on the Polymerization of Low-Viscosity Bulk-Fill Composites in Pediatric Restorations: An In Vitro Study.
Background/Objectives: This study aimed to investigate the influence of shade and thickness on the polymerization of SDR® flow+, a low-viscosity bulk-fill composite, by assessing its degree of conversion (DC). Methods: An in vitro study was conducted using SDR® flow+ composite resin. Specimens were prepared at two thicknesses (2 mm and 4 mm) and four shades (Universal, A1, A2, A3). Polymerization was performed using a high-intensity LED curing unit. The DC was assessed using Fourier-transform infrared spectroscopy (ATR-FTIR). Results: Both shade and thickness significantly influenced DC. Thicker specimens (4 mm) exhibited reduced polymerization compared to thinner specimens (2 mm). Darker shades, particularly A3, demonstrated the lowest DC values due to their higher chroma, which limits light penetration. In contrast, the Universal shade achieved higher DC values, even at increased depths, likely due to its greater translucency. Conclusions: Shade and thickness play a critical role in the polymerization of bulk-fill composites. Ensuring adequate polymerization is essential for the longevity of pediatric restorations. Further in vivo research is needed to confirm these findings and assess their clinical implications.