基于电荷吸附的口服结肠靶向丹皮酚乳改善溃疡性结肠炎。

IF 5.5 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Lan Zhang, Xi Xiong, Weiwen Lu, Jiazheng Li, Ruotong Zhang, Zhipeng Cai, Huixia Lv, Zhenhai Zhang, Jianming Ju, Ye Yang
{"title":"基于电荷吸附的口服结肠靶向丹皮酚乳改善溃疡性结肠炎。","authors":"Lan Zhang, Xi Xiong, Weiwen Lu, Jiazheng Li, Ruotong Zhang, Zhipeng Cai, Huixia Lv, Zhenhai Zhang, Jianming Ju, Ye Yang","doi":"10.1007/s13346-025-01918-5","DOIUrl":null,"url":null,"abstract":"<p><p>Ulcerative colitis (UC), an inflammatory bowel disease, poses a severe threat to human health. Paeonol has demonstrated potential for the treatment of UC, particularly because of its remarkable anti-inflammatory properties. However, the high volatility and low oral bioavailability of paeonol hinder its application in the treatment of UC. To address this challenge, a paeonol emulsion (PEM)-based oral delivery system was developed for the treatment of UC. In this study, we investigated the colonic-targeting efficacy of PEM and the mechanisms underlying its ability to alleviate colitis. The results revealed that the negatively charged PEM specifically adhered to the positively charged inflamed colonic tissues via electrostatic interactions, enabling effective targeted delivery. Additionally, the PEM maintained the balance between M1 and M2 macrophages, exhibiting excellent efficacy in alleviating UC. Mechanistic studies have shown that PEM significantly inhibits the expression of inflammatory cytokines and repairs the intestinal barrier. Furthermore, PEM modulates the composition of the gut microbiota by inhibiting the growth of harmful bacteria and promoting the growth of beneficial bacteria. In conclusion, the negatively charged emulsion delivery system constructed provides new insights into the development of an oral colon-targeted drug delivery system.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oral colon-targeted paeonol emulsion for ameliorating ulcerative colitis based on charge adsorption.\",\"authors\":\"Lan Zhang, Xi Xiong, Weiwen Lu, Jiazheng Li, Ruotong Zhang, Zhipeng Cai, Huixia Lv, Zhenhai Zhang, Jianming Ju, Ye Yang\",\"doi\":\"10.1007/s13346-025-01918-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ulcerative colitis (UC), an inflammatory bowel disease, poses a severe threat to human health. Paeonol has demonstrated potential for the treatment of UC, particularly because of its remarkable anti-inflammatory properties. However, the high volatility and low oral bioavailability of paeonol hinder its application in the treatment of UC. To address this challenge, a paeonol emulsion (PEM)-based oral delivery system was developed for the treatment of UC. In this study, we investigated the colonic-targeting efficacy of PEM and the mechanisms underlying its ability to alleviate colitis. The results revealed that the negatively charged PEM specifically adhered to the positively charged inflamed colonic tissues via electrostatic interactions, enabling effective targeted delivery. Additionally, the PEM maintained the balance between M1 and M2 macrophages, exhibiting excellent efficacy in alleviating UC. Mechanistic studies have shown that PEM significantly inhibits the expression of inflammatory cytokines and repairs the intestinal barrier. Furthermore, PEM modulates the composition of the gut microbiota by inhibiting the growth of harmful bacteria and promoting the growth of beneficial bacteria. In conclusion, the negatively charged emulsion delivery system constructed provides new insights into the development of an oral colon-targeted drug delivery system.</p>\",\"PeriodicalId\":11357,\"journal\":{\"name\":\"Drug Delivery and Translational Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery and Translational Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13346-025-01918-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-025-01918-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

溃疡性结肠炎(UC)是一种严重威胁人类健康的炎症性肠病。丹皮酚已被证明具有治疗UC的潜力,特别是由于其显著的抗炎特性。然而,丹皮酚的高挥发性和低口服生物利用度阻碍了其在UC治疗中的应用。为了解决这一挑战,开发了一种基于丹皮酚乳液(PEM)的口服给药系统,用于治疗UC。在这项研究中,我们研究了PEM的结肠靶向作用及其缓解结肠炎的机制。结果表明,带负电荷的PEM通过静电相互作用特异性地粘附在带正电荷的发炎结肠组织上,从而实现有效的靶向递送。此外,PEM维持了M1和M2巨噬细胞之间的平衡,显示出良好的缓解UC的疗效。机制研究表明PEM能显著抑制炎症细胞因子的表达,修复肠道屏障。此外,PEM通过抑制有害细菌的生长和促进有益细菌的生长来调节肠道微生物群的组成。总之,所构建的负电荷乳剂给药系统为开发口服结肠靶向给药系统提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oral colon-targeted paeonol emulsion for ameliorating ulcerative colitis based on charge adsorption.

Ulcerative colitis (UC), an inflammatory bowel disease, poses a severe threat to human health. Paeonol has demonstrated potential for the treatment of UC, particularly because of its remarkable anti-inflammatory properties. However, the high volatility and low oral bioavailability of paeonol hinder its application in the treatment of UC. To address this challenge, a paeonol emulsion (PEM)-based oral delivery system was developed for the treatment of UC. In this study, we investigated the colonic-targeting efficacy of PEM and the mechanisms underlying its ability to alleviate colitis. The results revealed that the negatively charged PEM specifically adhered to the positively charged inflamed colonic tissues via electrostatic interactions, enabling effective targeted delivery. Additionally, the PEM maintained the balance between M1 and M2 macrophages, exhibiting excellent efficacy in alleviating UC. Mechanistic studies have shown that PEM significantly inhibits the expression of inflammatory cytokines and repairs the intestinal barrier. Furthermore, PEM modulates the composition of the gut microbiota by inhibiting the growth of harmful bacteria and promoting the growth of beneficial bacteria. In conclusion, the negatively charged emulsion delivery system constructed provides new insights into the development of an oral colon-targeted drug delivery system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Delivery and Translational Research
Drug Delivery and Translational Research MEDICINE, RESEARCH & EXPERIMENTALPHARMACOL-PHARMACOLOGY & PHARMACY
CiteScore
11.70
自引率
1.90%
发文量
160
期刊介绍: The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions. Research focused on the following areas of translational drug delivery research will be considered for publication in the journal. Designing and developing novel drug delivery systems, with a focus on their application to disease conditions; Preclinical and clinical data related to drug delivery systems; Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes Short-term and long-term biocompatibility of drug delivery systems, host response; Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering; Image-guided drug therapy, Nanomedicine; Devices for drug delivery and drug/device combination products. In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信