{"title":"Amarogentin,天然苦萜类化合物:药理潜力、专利和毒性研究进展。","authors":"Sonia Singh, Mahima Varshney, Himanshu Sharma","doi":"10.2174/0115680266392073250808110715","DOIUrl":null,"url":null,"abstract":"<p><p>Amarogentin is a secoiridoid glycoside that was initially isolated from the medicinal plant Swertia chirayita. It is well-known for its formidable bitter characteristics and the varied pharmacological actions it possesses. Especially in both conventional and modern medical practices, this molecule has garnered considerable attention due to its enormous therapeutic potential. Amarogentin possesses a wide range of biological actions, some of which include functions that are hepatoprotective, anti-inflammatory, anti-cancer, anti-diabetic, and antibacterial. The hepatoprotective function it possesses is achieved by enhancing antioxidant defense systems and reducing liver damage caused by toxins. It is believed that the ability of amarogentin to block proinflammatory mediators, such as TNF-α and IL-6, is responsible for its anti-inflammatory properties. The stimulation of apoptosis and the reduction of cancer cell proliferation in various tumor models are two additional ways in which it demonstrates promising anti-cancer potential. The antidiabetic activity of amarogentin is characterized by the modification of glucose metabolism as well as an improvement in insulin sensitivity. To enhance the therapeutic efficacy of amarogentin, further research is needed to investigate its bioavailability and stability in the human body. This is despite the fact that it possesses a wide range of pharmacological advantages. There are formulation options that could improve its pharmacokinetic profile. Some examples of these strategies are nanoparticle delivery systems and derivatization. In general, amarogentin exhibits a great deal of promise as a natural therapeutic agent for the treatment of liver diseases, cancer, and metabolic disorders. Accordingly, there is a need for further research into the mechanisms underlying its clinical applications and potential uses.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amarogentin, Natural Bitter Terpenoids: Research Update with Pharmacological Potential, Patent and Toxicity Aspects.\",\"authors\":\"Sonia Singh, Mahima Varshney, Himanshu Sharma\",\"doi\":\"10.2174/0115680266392073250808110715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Amarogentin is a secoiridoid glycoside that was initially isolated from the medicinal plant Swertia chirayita. It is well-known for its formidable bitter characteristics and the varied pharmacological actions it possesses. Especially in both conventional and modern medical practices, this molecule has garnered considerable attention due to its enormous therapeutic potential. Amarogentin possesses a wide range of biological actions, some of which include functions that are hepatoprotective, anti-inflammatory, anti-cancer, anti-diabetic, and antibacterial. The hepatoprotective function it possesses is achieved by enhancing antioxidant defense systems and reducing liver damage caused by toxins. It is believed that the ability of amarogentin to block proinflammatory mediators, such as TNF-α and IL-6, is responsible for its anti-inflammatory properties. The stimulation of apoptosis and the reduction of cancer cell proliferation in various tumor models are two additional ways in which it demonstrates promising anti-cancer potential. The antidiabetic activity of amarogentin is characterized by the modification of glucose metabolism as well as an improvement in insulin sensitivity. To enhance the therapeutic efficacy of amarogentin, further research is needed to investigate its bioavailability and stability in the human body. This is despite the fact that it possesses a wide range of pharmacological advantages. There are formulation options that could improve its pharmacokinetic profile. Some examples of these strategies are nanoparticle delivery systems and derivatization. In general, amarogentin exhibits a great deal of promise as a natural therapeutic agent for the treatment of liver diseases, cancer, and metabolic disorders. Accordingly, there is a need for further research into the mechanisms underlying its clinical applications and potential uses.</p>\",\"PeriodicalId\":11076,\"journal\":{\"name\":\"Current topics in medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current topics in medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115680266392073250808110715\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266392073250808110715","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Amarogentin, Natural Bitter Terpenoids: Research Update with Pharmacological Potential, Patent and Toxicity Aspects.
Amarogentin is a secoiridoid glycoside that was initially isolated from the medicinal plant Swertia chirayita. It is well-known for its formidable bitter characteristics and the varied pharmacological actions it possesses. Especially in both conventional and modern medical practices, this molecule has garnered considerable attention due to its enormous therapeutic potential. Amarogentin possesses a wide range of biological actions, some of which include functions that are hepatoprotective, anti-inflammatory, anti-cancer, anti-diabetic, and antibacterial. The hepatoprotective function it possesses is achieved by enhancing antioxidant defense systems and reducing liver damage caused by toxins. It is believed that the ability of amarogentin to block proinflammatory mediators, such as TNF-α and IL-6, is responsible for its anti-inflammatory properties. The stimulation of apoptosis and the reduction of cancer cell proliferation in various tumor models are two additional ways in which it demonstrates promising anti-cancer potential. The antidiabetic activity of amarogentin is characterized by the modification of glucose metabolism as well as an improvement in insulin sensitivity. To enhance the therapeutic efficacy of amarogentin, further research is needed to investigate its bioavailability and stability in the human body. This is despite the fact that it possesses a wide range of pharmacological advantages. There are formulation options that could improve its pharmacokinetic profile. Some examples of these strategies are nanoparticle delivery systems and derivatization. In general, amarogentin exhibits a great deal of promise as a natural therapeutic agent for the treatment of liver diseases, cancer, and metabolic disorders. Accordingly, there is a need for further research into the mechanisms underlying its clinical applications and potential uses.
期刊介绍:
Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.