{"title":"抗氧化剂在不同信号通路治疗氧化应激引起的肝毒性中的作用。","authors":"Kartik Jadon, Swarupanjali Padhi","doi":"10.2174/0115680266398364250811231140","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidative stress plays a central role in the pathogenesis of liver diseases, including hepatotoxicity, by disrupting the balance between reactive oxygen species (ROS) and the hepatic antioxidant defense system. Excessive ROS production leads to inflammation, fibrosis, and cellular damage. Antioxidants-both endogenous and exogenous-can mitigate these effects by neutralizing ROS and restoring redox homeostasis. This review evaluates the mechanistic role of antioxidants in modulating key oxidative stress-related signaling pathways, such as nuclear factor erythroid 2-related factor 2 (Nrf2), mitogen-activated protein kinases (MAPKs), nuclear factorkappa B (NF-κB), phosphoinositide 3-kinase/Akt (PI3K/Akt), and Janus kinase/signal transducer and activator of transcription (JAK/STAT). Through the regulation of these pathways, antioxidants reduce apoptosis, suppress pro-inflammatory signaling, and enhance the expression of detoxifying enzymes. Natural compounds like flavonoids, polyphenols, and vitamins C and E have shown hepatoprotective effects, while synthetic antioxidants and their combinations with other therapeutic agents represent promising strategies for clinical application. This review underscores the therapeutic potential of antioxidants in combating oxidative stress-induced hepatotoxicity by offering a comprehensive overview of their mechanistic targets.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehension of the Function of Antioxidants in Targeting Different Signaling Pathways to Cure Oxidative Stress-Induced Hepatotoxicity.\",\"authors\":\"Kartik Jadon, Swarupanjali Padhi\",\"doi\":\"10.2174/0115680266398364250811231140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oxidative stress plays a central role in the pathogenesis of liver diseases, including hepatotoxicity, by disrupting the balance between reactive oxygen species (ROS) and the hepatic antioxidant defense system. Excessive ROS production leads to inflammation, fibrosis, and cellular damage. Antioxidants-both endogenous and exogenous-can mitigate these effects by neutralizing ROS and restoring redox homeostasis. This review evaluates the mechanistic role of antioxidants in modulating key oxidative stress-related signaling pathways, such as nuclear factor erythroid 2-related factor 2 (Nrf2), mitogen-activated protein kinases (MAPKs), nuclear factorkappa B (NF-κB), phosphoinositide 3-kinase/Akt (PI3K/Akt), and Janus kinase/signal transducer and activator of transcription (JAK/STAT). Through the regulation of these pathways, antioxidants reduce apoptosis, suppress pro-inflammatory signaling, and enhance the expression of detoxifying enzymes. Natural compounds like flavonoids, polyphenols, and vitamins C and E have shown hepatoprotective effects, while synthetic antioxidants and their combinations with other therapeutic agents represent promising strategies for clinical application. This review underscores the therapeutic potential of antioxidants in combating oxidative stress-induced hepatotoxicity by offering a comprehensive overview of their mechanistic targets.</p>\",\"PeriodicalId\":11076,\"journal\":{\"name\":\"Current topics in medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current topics in medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115680266398364250811231140\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266398364250811231140","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Comprehension of the Function of Antioxidants in Targeting Different Signaling Pathways to Cure Oxidative Stress-Induced Hepatotoxicity.
Oxidative stress plays a central role in the pathogenesis of liver diseases, including hepatotoxicity, by disrupting the balance between reactive oxygen species (ROS) and the hepatic antioxidant defense system. Excessive ROS production leads to inflammation, fibrosis, and cellular damage. Antioxidants-both endogenous and exogenous-can mitigate these effects by neutralizing ROS and restoring redox homeostasis. This review evaluates the mechanistic role of antioxidants in modulating key oxidative stress-related signaling pathways, such as nuclear factor erythroid 2-related factor 2 (Nrf2), mitogen-activated protein kinases (MAPKs), nuclear factorkappa B (NF-κB), phosphoinositide 3-kinase/Akt (PI3K/Akt), and Janus kinase/signal transducer and activator of transcription (JAK/STAT). Through the regulation of these pathways, antioxidants reduce apoptosis, suppress pro-inflammatory signaling, and enhance the expression of detoxifying enzymes. Natural compounds like flavonoids, polyphenols, and vitamins C and E have shown hepatoprotective effects, while synthetic antioxidants and their combinations with other therapeutic agents represent promising strategies for clinical application. This review underscores the therapeutic potential of antioxidants in combating oxidative stress-induced hepatotoxicity by offering a comprehensive overview of their mechanistic targets.
期刊介绍:
Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.