{"title":"化卓宁复汤通过抑制TNF-Α/IL-6和PI3K/AKT信号通路改善银屑病:网络药理学方法及实验验证","authors":"Zhuzhu Wu, Wenke Ma, Zitong Guan, Mengxue Han, Shuai Man, Zhenguo Wang","doi":"10.2174/0113862073390038250723201614","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Hua-Zhuo-Ning-Fu decoction (HZD) is a traditional Chinese medicine prescription that has been clinically used by Chinese medical master Wang Xinlu for treating psoriasis. However, the specific molecular mechanisms remain unclear.</p><p><strong>Methods: </strong>To identify the effective compounds of HZD and psoriasis-related genes, we conducted comprehensive searches in public databases, including TCMSP, SwissTargetPrediction, Gene Cards, and OMIM. Based on the degree values, core genes of HZD against psoriasis were determined. Furthermore, the affinity energy between the active compounds of HZD and their core targets was validated via molecular docking. Finally, the anti-psoriasis effects and potential mechanisms of HZD were examined in M5-stimulated HaCaT cells in vitro and IMQ-induced psoriasis mice in vivo.</p><p><strong>Results: </strong>Network pharmacological analysis of HZD for psoriasis treatment identified 43 active components and 243 targets. Topological and molecular docking analyses identified interleukin (IL)-6 and tumor necrosis factor-α (TNF-α) as core targets for its anti-psoriasis effects. Specifically, the docking energy of isovitexin with IL-6 was lower (-7.30 kcal/mol), and that of baicalin with TNF-α was lower (-6.70 kcal/mol). KEGG analysis revealed that the main pathway was the PI3K/AKT pathway. HZD inhibited cell viability, inflammation, and oxidative stress in M5- induced HaCaT cells. Animal experiments demonstrated that HZD alleviated psoriatic dermatitis, histopathological features, and inflammation in IMQ-induced mice with psoriatic plaques. Notably, HZD inhibited the expression of TNF-α and IL-6 and the activation of the PI3K/AKT pathway both in vivo and in vitro.</p><p><strong>Discussion: </strong>Specific upstream/downstream regulators of the PI3K/AKT axis regulated by HZD still need to be explored. Further investigation is essential to clarify the functional relationship between the predicted targets and active components.</p><p><strong>Conclusion: </strong>In summary, HZD potentially mitigated inflammatory responses by targeting the TNF-α and IL-6 proteins, interfered with the PI3K/AKT pathway, and consequently drove the anti-psoriatic effect in IMQ-induced mice. Our findings provide a theoretical basis for HZD's clinical use in psoriasis treatment.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hua-Zhuo-Ning-Fu Decoction Ameliorates Psoriasis by Inhibiting TNF-Α/IL-6 and PI3K/AKT Signaling Pathway: A Network Pharmacology Approach and Experimental Validation.\",\"authors\":\"Zhuzhu Wu, Wenke Ma, Zitong Guan, Mengxue Han, Shuai Man, Zhenguo Wang\",\"doi\":\"10.2174/0113862073390038250723201614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Hua-Zhuo-Ning-Fu decoction (HZD) is a traditional Chinese medicine prescription that has been clinically used by Chinese medical master Wang Xinlu for treating psoriasis. However, the specific molecular mechanisms remain unclear.</p><p><strong>Methods: </strong>To identify the effective compounds of HZD and psoriasis-related genes, we conducted comprehensive searches in public databases, including TCMSP, SwissTargetPrediction, Gene Cards, and OMIM. Based on the degree values, core genes of HZD against psoriasis were determined. Furthermore, the affinity energy between the active compounds of HZD and their core targets was validated via molecular docking. Finally, the anti-psoriasis effects and potential mechanisms of HZD were examined in M5-stimulated HaCaT cells in vitro and IMQ-induced psoriasis mice in vivo.</p><p><strong>Results: </strong>Network pharmacological analysis of HZD for psoriasis treatment identified 43 active components and 243 targets. Topological and molecular docking analyses identified interleukin (IL)-6 and tumor necrosis factor-α (TNF-α) as core targets for its anti-psoriasis effects. Specifically, the docking energy of isovitexin with IL-6 was lower (-7.30 kcal/mol), and that of baicalin with TNF-α was lower (-6.70 kcal/mol). KEGG analysis revealed that the main pathway was the PI3K/AKT pathway. HZD inhibited cell viability, inflammation, and oxidative stress in M5- induced HaCaT cells. Animal experiments demonstrated that HZD alleviated psoriatic dermatitis, histopathological features, and inflammation in IMQ-induced mice with psoriatic plaques. Notably, HZD inhibited the expression of TNF-α and IL-6 and the activation of the PI3K/AKT pathway both in vivo and in vitro.</p><p><strong>Discussion: </strong>Specific upstream/downstream regulators of the PI3K/AKT axis regulated by HZD still need to be explored. Further investigation is essential to clarify the functional relationship between the predicted targets and active components.</p><p><strong>Conclusion: </strong>In summary, HZD potentially mitigated inflammatory responses by targeting the TNF-α and IL-6 proteins, interfered with the PI3K/AKT pathway, and consequently drove the anti-psoriatic effect in IMQ-induced mice. Our findings provide a theoretical basis for HZD's clinical use in psoriasis treatment.</p>\",\"PeriodicalId\":10491,\"journal\":{\"name\":\"Combinatorial chemistry & high throughput screening\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorial chemistry & high throughput screening\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113862073390038250723201614\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073390038250723201614","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Hua-Zhuo-Ning-Fu Decoction Ameliorates Psoriasis by Inhibiting TNF-Α/IL-6 and PI3K/AKT Signaling Pathway: A Network Pharmacology Approach and Experimental Validation.
Introduction: Hua-Zhuo-Ning-Fu decoction (HZD) is a traditional Chinese medicine prescription that has been clinically used by Chinese medical master Wang Xinlu for treating psoriasis. However, the specific molecular mechanisms remain unclear.
Methods: To identify the effective compounds of HZD and psoriasis-related genes, we conducted comprehensive searches in public databases, including TCMSP, SwissTargetPrediction, Gene Cards, and OMIM. Based on the degree values, core genes of HZD against psoriasis were determined. Furthermore, the affinity energy between the active compounds of HZD and their core targets was validated via molecular docking. Finally, the anti-psoriasis effects and potential mechanisms of HZD were examined in M5-stimulated HaCaT cells in vitro and IMQ-induced psoriasis mice in vivo.
Results: Network pharmacological analysis of HZD for psoriasis treatment identified 43 active components and 243 targets. Topological and molecular docking analyses identified interleukin (IL)-6 and tumor necrosis factor-α (TNF-α) as core targets for its anti-psoriasis effects. Specifically, the docking energy of isovitexin with IL-6 was lower (-7.30 kcal/mol), and that of baicalin with TNF-α was lower (-6.70 kcal/mol). KEGG analysis revealed that the main pathway was the PI3K/AKT pathway. HZD inhibited cell viability, inflammation, and oxidative stress in M5- induced HaCaT cells. Animal experiments demonstrated that HZD alleviated psoriatic dermatitis, histopathological features, and inflammation in IMQ-induced mice with psoriatic plaques. Notably, HZD inhibited the expression of TNF-α and IL-6 and the activation of the PI3K/AKT pathway both in vivo and in vitro.
Discussion: Specific upstream/downstream regulators of the PI3K/AKT axis regulated by HZD still need to be explored. Further investigation is essential to clarify the functional relationship between the predicted targets and active components.
Conclusion: In summary, HZD potentially mitigated inflammatory responses by targeting the TNF-α and IL-6 proteins, interfered with the PI3K/AKT pathway, and consequently drove the anti-psoriatic effect in IMQ-induced mice. Our findings provide a theoretical basis for HZD's clinical use in psoriasis treatment.
期刊介绍:
Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal:
Target identification and validation
Assay design, development, miniaturization and comparison
High throughput/high content/in silico screening and associated technologies
Label-free detection technologies and applications
Stem cell technologies
Biomarkers
ADMET/PK/PD methodologies and screening
Probe discovery and development, hit to lead optimization
Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries)
Chemical library design and chemical diversity
Chemo/bio-informatics, data mining
Compound management
Pharmacognosy
Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products)
Natural Product Analytical Studies
Bipharmaceutical studies of Natural products
Drug repurposing
Data management and statistical analysis
Laboratory automation, robotics, microfluidics, signal detection technologies
Current & Future Institutional Research Profile
Technology transfer, legal and licensing issues
Patents.