{"title":"基于中心和Softmax损失函数(CNN- bilstm - cs)脑电的CNN双向长短期记忆情绪识别。","authors":"Xiaodan Zhang, Shuyi Wang, Yige Li, Kemeng Xu, Rui Zhao, Wei Wei","doi":"10.1007/s11571-025-10324-z","DOIUrl":null,"url":null,"abstract":"<p><p>EEG signal is being widely used in the field of emotion recognition, which currently suffers from the difficulty of obtaining highly distinguishable features. We propose CNN-BiLSTM-CS for emotion recognition EEG-based, which is to address the shortcomings of the traditional LSTM unidirectional propagation and Softmax supervised model in feature extraction. The method firstly employs BiLSTM to CNN, which can bilaterally obtain emotion feature information, and then introduces Center and Softmax to form a joint loss function to minimize the intra-class distance and maximize the inter-class distance, which can improve the recognition ability. DEAP and SEED dataset are employed to test the performance of CNN-BiLSTM-CS. The results of the average accuracy of valence and arousal are 94.22% and 92.16% on DEAP, which is increase by almost 6% to CNN-LSTM. The triple categorization accuracy of the SEED dataset is 95.45%. CNN-BiLSTM-CS significantly improves the recognition performance of deep features of EEG through the improved network structure and combined loss function.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"135"},"PeriodicalIF":3.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12373578/pdf/","citationCount":"0","resultStr":"{\"title\":\"Emotion recognition of CNN bidirectional long short-term memory with center and Softmax loss function (CNN-BiLSTM-CS) EEG -based.\",\"authors\":\"Xiaodan Zhang, Shuyi Wang, Yige Li, Kemeng Xu, Rui Zhao, Wei Wei\",\"doi\":\"10.1007/s11571-025-10324-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>EEG signal is being widely used in the field of emotion recognition, which currently suffers from the difficulty of obtaining highly distinguishable features. We propose CNN-BiLSTM-CS for emotion recognition EEG-based, which is to address the shortcomings of the traditional LSTM unidirectional propagation and Softmax supervised model in feature extraction. The method firstly employs BiLSTM to CNN, which can bilaterally obtain emotion feature information, and then introduces Center and Softmax to form a joint loss function to minimize the intra-class distance and maximize the inter-class distance, which can improve the recognition ability. DEAP and SEED dataset are employed to test the performance of CNN-BiLSTM-CS. The results of the average accuracy of valence and arousal are 94.22% and 92.16% on DEAP, which is increase by almost 6% to CNN-LSTM. The triple categorization accuracy of the SEED dataset is 95.45%. CNN-BiLSTM-CS significantly improves the recognition performance of deep features of EEG through the improved network structure and combined loss function.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"19 1\",\"pages\":\"135\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12373578/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-025-10324-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10324-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Emotion recognition of CNN bidirectional long short-term memory with center and Softmax loss function (CNN-BiLSTM-CS) EEG -based.
EEG signal is being widely used in the field of emotion recognition, which currently suffers from the difficulty of obtaining highly distinguishable features. We propose CNN-BiLSTM-CS for emotion recognition EEG-based, which is to address the shortcomings of the traditional LSTM unidirectional propagation and Softmax supervised model in feature extraction. The method firstly employs BiLSTM to CNN, which can bilaterally obtain emotion feature information, and then introduces Center and Softmax to form a joint loss function to minimize the intra-class distance and maximize the inter-class distance, which can improve the recognition ability. DEAP and SEED dataset are employed to test the performance of CNN-BiLSTM-CS. The results of the average accuracy of valence and arousal are 94.22% and 92.16% on DEAP, which is increase by almost 6% to CNN-LSTM. The triple categorization accuracy of the SEED dataset is 95.45%. CNN-BiLSTM-CS significantly improves the recognition performance of deep features of EEG through the improved network structure and combined loss function.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.