Shaorong Zhang, Zhongwei Lu, Benxin Zhang, Yong Zhang, Zhen Liang, Li Zhang, LinLing Li, Gan Huang, Zhiguo Zhang, Zhi Li
{"title":"基于图的特征学习方法在主体依赖和主体独立运动意象脑电解码中的应用。","authors":"Shaorong Zhang, Zhongwei Lu, Benxin Zhang, Yong Zhang, Zhen Liang, Li Zhang, LinLing Li, Gan Huang, Zhiguo Zhang, Zhi Li","doi":"10.1007/s11571-025-10291-5","DOIUrl":null,"url":null,"abstract":"<p><p>The significant intra-individual variability and inter-individual differences in scalp electroencephalogram (EEG) make it difficult to learn task-distinguishable features, posing a challenge for motor imagery brain-computer interfaces. Current feature learning methods often produce an incomplete feature space, struggling to accommodate these variations and differences. Additionally, the weak discriminative nature of this feature space results in diminished EEG classification performance. This paper introduces novel graph-based feature learning methods to improve motor imagery decoding performance in both subject-dependent and subject-independent contexts. Firstly, construct a complete time-frequency-spatial-graph (TFSG) feature space. The original EEG signals are segmented into multiple time-frequency units using filter banks and sliding time windows. Spatial and brain network-based graph features are then extracted from each time-frequency unit and fused to create the TFSG features. This fused feature space is larger and more inclusive, effectively accommodating both intra- and inter-individual EEG variations. Secondly, learn a discriminative TFSG feature space. Two advanced methods are proposed. The first method employs a nonconvex sparse optimization model with log function regularization, which reduces bias in model estimation, thereby enabling more accurate learning of EEG patterns. The second method incorporates Fisher's criterion regularization into a sparse optimization framework to improve feature separability. A unified algorithmic framework is developed to solve the two new models. Our methods are validated on two motor imagery EEG datasets, achieving the highest average classification accuracies of 82.93, 68.52, and 71.69% for subject-dependent, subject-independent, and subject-adaptive evaluation methods, respectively. Experimental results demonstrate that the developed TFSG features significantly enhance both subject-dependent and subject-independent decoding performance, while the proposed regularization models improve the discriminability of the feature space, leading to further advancements in motor imagery decoding performance.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11571-025-10291-5.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"139"},"PeriodicalIF":3.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12381331/pdf/","citationCount":"0","resultStr":"{\"title\":\"Graph-based feature learning methods for subject-dependent and subject-independent motor imagery EEG decoding.\",\"authors\":\"Shaorong Zhang, Zhongwei Lu, Benxin Zhang, Yong Zhang, Zhen Liang, Li Zhang, LinLing Li, Gan Huang, Zhiguo Zhang, Zhi Li\",\"doi\":\"10.1007/s11571-025-10291-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The significant intra-individual variability and inter-individual differences in scalp electroencephalogram (EEG) make it difficult to learn task-distinguishable features, posing a challenge for motor imagery brain-computer interfaces. Current feature learning methods often produce an incomplete feature space, struggling to accommodate these variations and differences. Additionally, the weak discriminative nature of this feature space results in diminished EEG classification performance. This paper introduces novel graph-based feature learning methods to improve motor imagery decoding performance in both subject-dependent and subject-independent contexts. Firstly, construct a complete time-frequency-spatial-graph (TFSG) feature space. The original EEG signals are segmented into multiple time-frequency units using filter banks and sliding time windows. Spatial and brain network-based graph features are then extracted from each time-frequency unit and fused to create the TFSG features. This fused feature space is larger and more inclusive, effectively accommodating both intra- and inter-individual EEG variations. Secondly, learn a discriminative TFSG feature space. Two advanced methods are proposed. The first method employs a nonconvex sparse optimization model with log function regularization, which reduces bias in model estimation, thereby enabling more accurate learning of EEG patterns. The second method incorporates Fisher's criterion regularization into a sparse optimization framework to improve feature separability. A unified algorithmic framework is developed to solve the two new models. Our methods are validated on two motor imagery EEG datasets, achieving the highest average classification accuracies of 82.93, 68.52, and 71.69% for subject-dependent, subject-independent, and subject-adaptive evaluation methods, respectively. Experimental results demonstrate that the developed TFSG features significantly enhance both subject-dependent and subject-independent decoding performance, while the proposed regularization models improve the discriminability of the feature space, leading to further advancements in motor imagery decoding performance.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11571-025-10291-5.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"19 1\",\"pages\":\"139\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12381331/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-025-10291-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10291-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Graph-based feature learning methods for subject-dependent and subject-independent motor imagery EEG decoding.
The significant intra-individual variability and inter-individual differences in scalp electroencephalogram (EEG) make it difficult to learn task-distinguishable features, posing a challenge for motor imagery brain-computer interfaces. Current feature learning methods often produce an incomplete feature space, struggling to accommodate these variations and differences. Additionally, the weak discriminative nature of this feature space results in diminished EEG classification performance. This paper introduces novel graph-based feature learning methods to improve motor imagery decoding performance in both subject-dependent and subject-independent contexts. Firstly, construct a complete time-frequency-spatial-graph (TFSG) feature space. The original EEG signals are segmented into multiple time-frequency units using filter banks and sliding time windows. Spatial and brain network-based graph features are then extracted from each time-frequency unit and fused to create the TFSG features. This fused feature space is larger and more inclusive, effectively accommodating both intra- and inter-individual EEG variations. Secondly, learn a discriminative TFSG feature space. Two advanced methods are proposed. The first method employs a nonconvex sparse optimization model with log function regularization, which reduces bias in model estimation, thereby enabling more accurate learning of EEG patterns. The second method incorporates Fisher's criterion regularization into a sparse optimization framework to improve feature separability. A unified algorithmic framework is developed to solve the two new models. Our methods are validated on two motor imagery EEG datasets, achieving the highest average classification accuracies of 82.93, 68.52, and 71.69% for subject-dependent, subject-independent, and subject-adaptive evaluation methods, respectively. Experimental results demonstrate that the developed TFSG features significantly enhance both subject-dependent and subject-independent decoding performance, while the proposed regularization models improve the discriminability of the feature space, leading to further advancements in motor imagery decoding performance.
Supplementary information: The online version contains supplementary material available at 10.1007/s11571-025-10291-5.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.