TAS2R43和TAS2R46基因多态性对受体功能和咖啡因苦味感知的影响

IF 1.9 4区 心理学 Q1 BEHAVIORAL SCIENCES
Rena Numabe, Alon Rainish, Masha Y Niv, Hiroo Imai
{"title":"TAS2R43和TAS2R46基因多态性对受体功能和咖啡因苦味感知的影响","authors":"Rena Numabe, Alon Rainish, Masha Y Niv, Hiroo Imai","doi":"10.1093/chemse/bjaf027","DOIUrl":null,"url":null,"abstract":"<p><p>We investigated the effects of coding single-nucleotide polymorphisms (SNPs) in bitter taste receptors TAS2R43 and TAS2R46 on their predicted structural stability, cellular functions, and human threshold for bitterness of caffeine. We found differences in the cell surface expression and reaction to caffeine among the haplotypes of TAS2R43 and -46 protein. Ancestral haplotypes of the proteins showed higher response to caffeine than derived haplotypes both for TAS2R43 and -46, which were also predicted to be less structurally stable and showed lower expression at the cell surface membrane. There was a significant difference in human bitter perception of caffeine between people with different TAS2R43 genotypes. Considering the functional differences based on their genotypes and the distribution of the haplotypes in the regions, these SNPs may relate to the sensitivity to several bitter compounds, which correlated with human evolution spread from Africa.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of the genetic polymorphisms of TAS2R43 and TAS2R46 on receptors' function and on perceived bitterness of caffeine by human subjects.\",\"authors\":\"Rena Numabe, Alon Rainish, Masha Y Niv, Hiroo Imai\",\"doi\":\"10.1093/chemse/bjaf027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigated the effects of coding single-nucleotide polymorphisms (SNPs) in bitter taste receptors TAS2R43 and TAS2R46 on their predicted structural stability, cellular functions, and human threshold for bitterness of caffeine. We found differences in the cell surface expression and reaction to caffeine among the haplotypes of TAS2R43 and -46 protein. Ancestral haplotypes of the proteins showed higher response to caffeine than derived haplotypes both for TAS2R43 and -46, which were also predicted to be less structurally stable and showed lower expression at the cell surface membrane. There was a significant difference in human bitter perception of caffeine between people with different TAS2R43 genotypes. Considering the functional differences based on their genotypes and the distribution of the haplotypes in the regions, these SNPs may relate to the sensitivity to several bitter compounds, which correlated with human evolution spread from Africa.</p>\",\"PeriodicalId\":9771,\"journal\":{\"name\":\"Chemical Senses\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Senses\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1093/chemse/bjaf027\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Senses","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1093/chemse/bjaf027","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了苦味受体TAS2R43和TAS2R46编码snp(单核苷酸多态性)对其预测结构稳定性、细胞功能和人类对咖啡因苦味阈值的影响。我们发现TAS2R43和-46蛋白的单倍型在细胞表面表达和对咖啡因的反应上存在差异。与TAS2R43和-46的衍生单倍型相比,这些蛋白的祖先单倍型对咖啡因的反应更高,而且它们的结构稳定性较差,在细胞膜表面的表达量也较低。不同TAS2R43基因型的人对咖啡因的苦味感知有显著差异。考虑到基因型的功能差异和单倍型在该地区的分布,这些snp可能与人类对几种苦味化合物的敏感性有关,这些化合物与人类从非洲进化而来的传播有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of the genetic polymorphisms of TAS2R43 and TAS2R46 on receptors' function and on perceived bitterness of caffeine by human subjects.

We investigated the effects of coding single-nucleotide polymorphisms (SNPs) in bitter taste receptors TAS2R43 and TAS2R46 on their predicted structural stability, cellular functions, and human threshold for bitterness of caffeine. We found differences in the cell surface expression and reaction to caffeine among the haplotypes of TAS2R43 and -46 protein. Ancestral haplotypes of the proteins showed higher response to caffeine than derived haplotypes both for TAS2R43 and -46, which were also predicted to be less structurally stable and showed lower expression at the cell surface membrane. There was a significant difference in human bitter perception of caffeine between people with different TAS2R43 genotypes. Considering the functional differences based on their genotypes and the distribution of the haplotypes in the regions, these SNPs may relate to the sensitivity to several bitter compounds, which correlated with human evolution spread from Africa.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Senses
Chemical Senses 医学-行为科学
CiteScore
8.60
自引率
2.90%
发文量
25
审稿时长
1 months
期刊介绍: Chemical Senses publishes original research and review papers on all aspects of chemoreception in both humans and animals. An important part of the journal''s coverage is devoted to techniques and the development and application of new methods for investigating chemoreception and chemosensory structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信