YModPred:一种基于深度学习的酿酒酵母多类型RNA修饰位点可解释预测方法。

IF 4.5 1区 生物学 Q1 BIOLOGY
Chunyan Ao, Mengting Niu, Quan Zou, Liang Yu, Yansu Wang
{"title":"YModPred:一种基于深度学习的酿酒酵母多类型RNA修饰位点可解释预测方法。","authors":"Chunyan Ao, Mengting Niu, Quan Zou, Liang Yu, Yansu Wang","doi":"10.1186/s12915-025-02372-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>RNA post-transcriptional modifications involve the addition of chemical groups to RNA molecules or alterations to their local structure. These modifications can change RNA base pairing, affect thermal stability, and influence RNA folding, thereby impacting alternative splicing, translation, cellular localization, stability, and interactions with proteins and other molecules. Accurate prediction of RNA modification sites is essential for understanding modification mechanisms.</p><p><strong>Results: </strong>We propose a novel deep learning model, YModPred, which accurately predicts multiple types of RNA modification sites in S. cerevisiae based on RNA sequences. YModPred combines convolution and self-attention mechanisms to enhance the model's ability to capture global sequence information and improve local feature learning. The model can predict multi-type RNA modification sites. Comparative analysis against benchmark models demonstrates that YModPred outperforms existing state-of-the-art methods in predicting various RNA modification types. Additionally, the model's prediction performance is further validated through visualization and motif analysis.</p><p><strong>Conclusions: </strong>YModPred is a deep learning-based model that effectively captures sequence features and dependencies, enabling accurate prediction of multi-type RNA modification sites in S. cerevisiae. We believe it will facilitate further research into the mechanisms of RNA modifications.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"23 1","pages":"272"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12398117/pdf/","citationCount":"0","resultStr":"{\"title\":\"YModPred: an interpretable prediction method for multi-type RNA modification sites in S. cerevisiae based on deep learning.\",\"authors\":\"Chunyan Ao, Mengting Niu, Quan Zou, Liang Yu, Yansu Wang\",\"doi\":\"10.1186/s12915-025-02372-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>RNA post-transcriptional modifications involve the addition of chemical groups to RNA molecules or alterations to their local structure. These modifications can change RNA base pairing, affect thermal stability, and influence RNA folding, thereby impacting alternative splicing, translation, cellular localization, stability, and interactions with proteins and other molecules. Accurate prediction of RNA modification sites is essential for understanding modification mechanisms.</p><p><strong>Results: </strong>We propose a novel deep learning model, YModPred, which accurately predicts multiple types of RNA modification sites in S. cerevisiae based on RNA sequences. YModPred combines convolution and self-attention mechanisms to enhance the model's ability to capture global sequence information and improve local feature learning. The model can predict multi-type RNA modification sites. Comparative analysis against benchmark models demonstrates that YModPred outperforms existing state-of-the-art methods in predicting various RNA modification types. Additionally, the model's prediction performance is further validated through visualization and motif analysis.</p><p><strong>Conclusions: </strong>YModPred is a deep learning-based model that effectively captures sequence features and dependencies, enabling accurate prediction of multi-type RNA modification sites in S. cerevisiae. We believe it will facilitate further research into the mechanisms of RNA modifications.</p>\",\"PeriodicalId\":9339,\"journal\":{\"name\":\"BMC Biology\",\"volume\":\"23 1\",\"pages\":\"272\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12398117/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12915-025-02372-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-025-02372-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:RNA转录后修饰包括在RNA分子上添加化学基团或改变其局部结构。这些修饰可以改变RNA碱基配对,影响热稳定性,影响RNA折叠,从而影响选择性剪接、翻译、细胞定位、稳定性以及与蛋白质和其他分子的相互作用。准确预测RNA修饰位点对于理解修饰机制至关重要。结果:我们提出了一种新的深度学习模型YModPred,该模型可以基于RNA序列准确预测酿酒葡萄球菌多种类型的RNA修饰位点。YModPred结合了卷积和自关注机制,增强了模型捕获全局序列信息的能力,改善了局部特征学习。该模型可以预测多种类型的RNA修饰位点。与基准模型的比较分析表明,YModPred在预测各种RNA修饰类型方面优于现有的最先进方法。此外,通过可视化和基序分析进一步验证了模型的预测性能。结论:YModPred是一个基于深度学习的模型,能够有效捕获序列特征和依赖关系,能够准确预测酿酒葡萄球菌的多类型RNA修饰位点。我们相信这将有助于进一步研究RNA修饰的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
YModPred: an interpretable prediction method for multi-type RNA modification sites in S. cerevisiae based on deep learning.

Background: RNA post-transcriptional modifications involve the addition of chemical groups to RNA molecules or alterations to their local structure. These modifications can change RNA base pairing, affect thermal stability, and influence RNA folding, thereby impacting alternative splicing, translation, cellular localization, stability, and interactions with proteins and other molecules. Accurate prediction of RNA modification sites is essential for understanding modification mechanisms.

Results: We propose a novel deep learning model, YModPred, which accurately predicts multiple types of RNA modification sites in S. cerevisiae based on RNA sequences. YModPred combines convolution and self-attention mechanisms to enhance the model's ability to capture global sequence information and improve local feature learning. The model can predict multi-type RNA modification sites. Comparative analysis against benchmark models demonstrates that YModPred outperforms existing state-of-the-art methods in predicting various RNA modification types. Additionally, the model's prediction performance is further validated through visualization and motif analysis.

Conclusions: YModPred is a deep learning-based model that effectively captures sequence features and dependencies, enabling accurate prediction of multi-type RNA modification sites in S. cerevisiae. We believe it will facilitate further research into the mechanisms of RNA modifications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Biology
BMC Biology 生物-生物学
CiteScore
7.80
自引率
1.90%
发文量
260
审稿时长
3 months
期刊介绍: BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信