CT上深度学习图像重建的临床效果。

IF 3.4 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Meghan G Lubner, Perry J Pickhardt, Giuseppe V Toia, Timothy P Szczykutowicz
{"title":"CT上深度学习图像重建的临床效果。","authors":"Meghan G Lubner, Perry J Pickhardt, Giuseppe V Toia, Timothy P Szczykutowicz","doi":"10.1093/bjr/tqaf152","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning reconstruction (DLR) offers a variety of advantages over the current standard iterative reconstruction techniques, including decreased image noise without changes in noise texture and less susceptibility to spatial resolution limitations at low dose. These advances may allow for more aggressive dose reduction in CT imaging while maintaining image quality and diagnostic accuracy. However, performance of DLRs is impacted by the type of framework and training data used. In addition, the patient size and clinical task being performed may impact the amount of dose reduction that can be reasonably employed. Multiple DLRs are currently FDA approved with a growing body of literature evaluating performance throughout this body; however, continued work is warranted to evaluate a variety of clinical scenarios to fully explore the evolving potential of DLR. Depending on the type and strength of DLR applied, blurring and occasionally other artifacts may be introduced. DLRs also show promise in artifact reduction, particularly metal artifact reduction. This commentary focuses primarily on current DLR data for abdominal applications, current challenges, and future areas of potential exploration.</p>","PeriodicalId":9306,"journal":{"name":"British Journal of Radiology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clinical Consequences of Deep Learning Image Reconstruction at CT.\",\"authors\":\"Meghan G Lubner, Perry J Pickhardt, Giuseppe V Toia, Timothy P Szczykutowicz\",\"doi\":\"10.1093/bjr/tqaf152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deep learning reconstruction (DLR) offers a variety of advantages over the current standard iterative reconstruction techniques, including decreased image noise without changes in noise texture and less susceptibility to spatial resolution limitations at low dose. These advances may allow for more aggressive dose reduction in CT imaging while maintaining image quality and diagnostic accuracy. However, performance of DLRs is impacted by the type of framework and training data used. In addition, the patient size and clinical task being performed may impact the amount of dose reduction that can be reasonably employed. Multiple DLRs are currently FDA approved with a growing body of literature evaluating performance throughout this body; however, continued work is warranted to evaluate a variety of clinical scenarios to fully explore the evolving potential of DLR. Depending on the type and strength of DLR applied, blurring and occasionally other artifacts may be introduced. DLRs also show promise in artifact reduction, particularly metal artifact reduction. This commentary focuses primarily on current DLR data for abdominal applications, current challenges, and future areas of potential exploration.</p>\",\"PeriodicalId\":9306,\"journal\":{\"name\":\"British Journal of Radiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/bjr/tqaf152\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/bjr/tqaf152","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

与当前标准的迭代重建技术相比,深度学习重建(DLR)具有多种优势,包括在不改变噪声纹理的情况下降低图像噪声,以及在低剂量下对空间分辨率限制的敏感性较低。这些进步可能允许在保持图像质量和诊断准确性的同时更积极地减少CT成像剂量。然而,dlr的性能受到所使用的框架类型和训练数据的影响。此外,患者的大小和正在执行的临床任务可能影响可以合理使用的剂量减少量。目前FDA批准了多个dlr,越来越多的文献评估了整个机构的表现;然而,需要继续开展工作来评估各种临床情况,以充分探索DLR的发展潜力。根据所应用DLR的类型和强度,可能会引入模糊和偶尔的其他伪影。dlr在减少伪影,特别是金属伪影方面也有前景。这篇评论主要关注目前腹部应用的DLR数据、当前的挑战和未来的潜在探索领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clinical Consequences of Deep Learning Image Reconstruction at CT.

Deep learning reconstruction (DLR) offers a variety of advantages over the current standard iterative reconstruction techniques, including decreased image noise without changes in noise texture and less susceptibility to spatial resolution limitations at low dose. These advances may allow for more aggressive dose reduction in CT imaging while maintaining image quality and diagnostic accuracy. However, performance of DLRs is impacted by the type of framework and training data used. In addition, the patient size and clinical task being performed may impact the amount of dose reduction that can be reasonably employed. Multiple DLRs are currently FDA approved with a growing body of literature evaluating performance throughout this body; however, continued work is warranted to evaluate a variety of clinical scenarios to fully explore the evolving potential of DLR. Depending on the type and strength of DLR applied, blurring and occasionally other artifacts may be introduced. DLRs also show promise in artifact reduction, particularly metal artifact reduction. This commentary focuses primarily on current DLR data for abdominal applications, current challenges, and future areas of potential exploration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
British Journal of Radiology
British Journal of Radiology 医学-核医学
CiteScore
5.30
自引率
3.80%
发文量
330
审稿时长
2-4 weeks
期刊介绍: BJR is the international research journal of the British Institute of Radiology and is the oldest scientific journal in the field of radiology and related sciences. Dating back to 1896, BJR’s history is radiology’s history, and the journal has featured some landmark papers such as the first description of Computed Tomography "Computerized transverse axial tomography" by Godfrey Hounsfield in 1973. A valuable historical resource, the complete BJR archive has been digitized from 1896. Quick Facts: - 2015 Impact Factor – 1.840 - Receipt to first decision – average of 6 weeks - Acceptance to online publication – average of 3 weeks - ISSN: 0007-1285 - eISSN: 1748-880X Open Access option
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信