{"title":"猪皮肤单细胞转录组图谱揭示了从胚胎发育到出生后衰老的细胞异质性。","authors":"Ting Zheng, Rong Yuan, Yu Zhang, Qin Zou, Yifei Wang, Yujing Li, Zhengyin Gong, Zhengli Chen, Yanzhi Jiang","doi":"10.1186/s12915-025-02390-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mammalian skin exhibits profound cellular and molecular restructuring across lifespan, yet an integrated single-cell mapping from embryogenesis to senescence remains limited. The Chenghua (CH) pig, with exceptional skin thickness characteristics, provides a promising model for investigating human skin development and physiology.</p><p><strong>Results: </strong>We constructed a comprehensive single-cell RNA atlas of 443,529 cells from CH pig skin spanning 10 developmental stages (embryonic day 56 to postnatally year 7). Our analysis identified eight major skin cell types and revealed stage-specific shifts in cellular composition. Fibroblasts (FBs) and mesenchymal stem cells (MSCs) dominated embryonic development while smooth muscle cells and endothelial cells increased postnatally, with aging marked by FB dysfunction and significant dermal thinning. Pseudotime trajectory analysis identified that FBs differentiated from a common progenitor with MSCs, diverging into five functionally distinct subpopulations including papillary, reticular, mesenchymal, pro-inflammatory, and a novel AUTS2⁺ subtype with neuromodulatory roles. Critically, FBs regulated postnatal skin aging via COL1A1-(ITGA1 + ITGB1) and MDK-SDC1 interaction signaling pathways, with the transcription factor EGR1 regulating collagen-related genes (DPT, COL12A1, COL5A2) during development; the age-dependent suppression of FBs coincided with collagen downregulation, reduced intercellular communication, and elevated transcriptional noise. Concurrently, immune cells including dendritic cells (DCs) and T cells (TCs) exhibited a marked decrease of cell numbers perinatally, with cytotoxic NKT cells reaching peak abundance at rapid growth stage; DCs and TCs primarily utilized SPP1 and TGF-β signaling pathways to regulate skin immunity during development and aging. Cross-species analysis confirmed the evolutionary conservation of skin cell types and FB functional gene profiles related to ECM deposition and inflammatory responses across pigs, humans, and mice during development and aging.</p><p><strong>Conclusions: </strong>This work delineates cellular dynamics underpinning skin homeostasis, uncovers the vital physiological functions of FBs and immune cells during skin development and aging, and validates the pig model for human cutaneous physiology research. The atlas serves as a pivotal resource for skin mechanistic and translational studies.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"23 1","pages":"275"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12403584/pdf/","citationCount":"0","resultStr":"{\"title\":\"A single-cell transcriptome atlas of pig skin reveals cellular heterogeneity from embryonic development to postnatal aging.\",\"authors\":\"Ting Zheng, Rong Yuan, Yu Zhang, Qin Zou, Yifei Wang, Yujing Li, Zhengyin Gong, Zhengli Chen, Yanzhi Jiang\",\"doi\":\"10.1186/s12915-025-02390-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Mammalian skin exhibits profound cellular and molecular restructuring across lifespan, yet an integrated single-cell mapping from embryogenesis to senescence remains limited. The Chenghua (CH) pig, with exceptional skin thickness characteristics, provides a promising model for investigating human skin development and physiology.</p><p><strong>Results: </strong>We constructed a comprehensive single-cell RNA atlas of 443,529 cells from CH pig skin spanning 10 developmental stages (embryonic day 56 to postnatally year 7). Our analysis identified eight major skin cell types and revealed stage-specific shifts in cellular composition. Fibroblasts (FBs) and mesenchymal stem cells (MSCs) dominated embryonic development while smooth muscle cells and endothelial cells increased postnatally, with aging marked by FB dysfunction and significant dermal thinning. Pseudotime trajectory analysis identified that FBs differentiated from a common progenitor with MSCs, diverging into five functionally distinct subpopulations including papillary, reticular, mesenchymal, pro-inflammatory, and a novel AUTS2⁺ subtype with neuromodulatory roles. Critically, FBs regulated postnatal skin aging via COL1A1-(ITGA1 + ITGB1) and MDK-SDC1 interaction signaling pathways, with the transcription factor EGR1 regulating collagen-related genes (DPT, COL12A1, COL5A2) during development; the age-dependent suppression of FBs coincided with collagen downregulation, reduced intercellular communication, and elevated transcriptional noise. Concurrently, immune cells including dendritic cells (DCs) and T cells (TCs) exhibited a marked decrease of cell numbers perinatally, with cytotoxic NKT cells reaching peak abundance at rapid growth stage; DCs and TCs primarily utilized SPP1 and TGF-β signaling pathways to regulate skin immunity during development and aging. Cross-species analysis confirmed the evolutionary conservation of skin cell types and FB functional gene profiles related to ECM deposition and inflammatory responses across pigs, humans, and mice during development and aging.</p><p><strong>Conclusions: </strong>This work delineates cellular dynamics underpinning skin homeostasis, uncovers the vital physiological functions of FBs and immune cells during skin development and aging, and validates the pig model for human cutaneous physiology research. The atlas serves as a pivotal resource for skin mechanistic and translational studies.</p>\",\"PeriodicalId\":9339,\"journal\":{\"name\":\"BMC Biology\",\"volume\":\"23 1\",\"pages\":\"275\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12403584/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12915-025-02390-w\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-025-02390-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
A single-cell transcriptome atlas of pig skin reveals cellular heterogeneity from embryonic development to postnatal aging.
Background: Mammalian skin exhibits profound cellular and molecular restructuring across lifespan, yet an integrated single-cell mapping from embryogenesis to senescence remains limited. The Chenghua (CH) pig, with exceptional skin thickness characteristics, provides a promising model for investigating human skin development and physiology.
Results: We constructed a comprehensive single-cell RNA atlas of 443,529 cells from CH pig skin spanning 10 developmental stages (embryonic day 56 to postnatally year 7). Our analysis identified eight major skin cell types and revealed stage-specific shifts in cellular composition. Fibroblasts (FBs) and mesenchymal stem cells (MSCs) dominated embryonic development while smooth muscle cells and endothelial cells increased postnatally, with aging marked by FB dysfunction and significant dermal thinning. Pseudotime trajectory analysis identified that FBs differentiated from a common progenitor with MSCs, diverging into five functionally distinct subpopulations including papillary, reticular, mesenchymal, pro-inflammatory, and a novel AUTS2⁺ subtype with neuromodulatory roles. Critically, FBs regulated postnatal skin aging via COL1A1-(ITGA1 + ITGB1) and MDK-SDC1 interaction signaling pathways, with the transcription factor EGR1 regulating collagen-related genes (DPT, COL12A1, COL5A2) during development; the age-dependent suppression of FBs coincided with collagen downregulation, reduced intercellular communication, and elevated transcriptional noise. Concurrently, immune cells including dendritic cells (DCs) and T cells (TCs) exhibited a marked decrease of cell numbers perinatally, with cytotoxic NKT cells reaching peak abundance at rapid growth stage; DCs and TCs primarily utilized SPP1 and TGF-β signaling pathways to regulate skin immunity during development and aging. Cross-species analysis confirmed the evolutionary conservation of skin cell types and FB functional gene profiles related to ECM deposition and inflammatory responses across pigs, humans, and mice during development and aging.
Conclusions: This work delineates cellular dynamics underpinning skin homeostasis, uncovers the vital physiological functions of FBs and immune cells during skin development and aging, and validates the pig model for human cutaneous physiology research. The atlas serves as a pivotal resource for skin mechanistic and translational studies.
期刊介绍:
BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.