{"title":"三种细菌菌株在细胞膜中有效地将亚硒酸盐还原为纳米硒。","authors":"Ruixia Li, Wenqiang Chen, Siyuan Huang, Daihua Jiang, Zhengjie Zhu, Chong Li, Xuejiao Huang","doi":"10.1186/s12866-025-04304-w","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial synthesis of selenium nanoparticles (SeNPs) as a fertilizer can promote the development of selenium-rich agricultural products. However, most known selenium-reduction strains exhibit a tolerance to selenite of ≤ 100 mmol/L and possess relatively low reduction efficiency. In this study, three strains capable of tolerating selenite concentrations of > 300 mmol/L were screened from selenium-rich soil in Bama, Guangxi, China. Based on 16 S rRNA gene sequence analysis, the three strains were identified as Citrobacter sp.BM-1, Providencia sp.BM-2, and Brucella sp.BM-3. Notably, Brucella sp.BM-3 represents a novel selenium-reducing bacteria. All three strains reduced SeO<sub>3</sub><sup>2-</sup> to SeNPs on the cell membrane and subsequently released these nanoparticles outside the cells, forming spherical SeNPs with a particle size of 210-221 nm. Furthermore, qPCR analysis revealed that the selenium-reduction mechanisms in these strains primarily involve the glutathione pathway, which is catalyzed by nitrate reductase and sulfate reductase. These findings suggest that Citrobacter sp.BM-1, Providencia sp.BM-2, and Brucella sp.BM-3 are promising candidates for the synthesis of SeNPs.</p>","PeriodicalId":9233,"journal":{"name":"BMC Microbiology","volume":"25 1","pages":"564"},"PeriodicalIF":4.2000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12395796/pdf/","citationCount":"0","resultStr":"{\"title\":\"Three bacterial strains efficiently reduce selenite to selenium nanoparticles in cell membranes.\",\"authors\":\"Ruixia Li, Wenqiang Chen, Siyuan Huang, Daihua Jiang, Zhengjie Zhu, Chong Li, Xuejiao Huang\",\"doi\":\"10.1186/s12866-025-04304-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbial synthesis of selenium nanoparticles (SeNPs) as a fertilizer can promote the development of selenium-rich agricultural products. However, most known selenium-reduction strains exhibit a tolerance to selenite of ≤ 100 mmol/L and possess relatively low reduction efficiency. In this study, three strains capable of tolerating selenite concentrations of > 300 mmol/L were screened from selenium-rich soil in Bama, Guangxi, China. Based on 16 S rRNA gene sequence analysis, the three strains were identified as Citrobacter sp.BM-1, Providencia sp.BM-2, and Brucella sp.BM-3. Notably, Brucella sp.BM-3 represents a novel selenium-reducing bacteria. All three strains reduced SeO<sub>3</sub><sup>2-</sup> to SeNPs on the cell membrane and subsequently released these nanoparticles outside the cells, forming spherical SeNPs with a particle size of 210-221 nm. Furthermore, qPCR analysis revealed that the selenium-reduction mechanisms in these strains primarily involve the glutathione pathway, which is catalyzed by nitrate reductase and sulfate reductase. These findings suggest that Citrobacter sp.BM-1, Providencia sp.BM-2, and Brucella sp.BM-3 are promising candidates for the synthesis of SeNPs.</p>\",\"PeriodicalId\":9233,\"journal\":{\"name\":\"BMC Microbiology\",\"volume\":\"25 1\",\"pages\":\"564\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12395796/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12866-025-04304-w\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12866-025-04304-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Three bacterial strains efficiently reduce selenite to selenium nanoparticles in cell membranes.
Microbial synthesis of selenium nanoparticles (SeNPs) as a fertilizer can promote the development of selenium-rich agricultural products. However, most known selenium-reduction strains exhibit a tolerance to selenite of ≤ 100 mmol/L and possess relatively low reduction efficiency. In this study, three strains capable of tolerating selenite concentrations of > 300 mmol/L were screened from selenium-rich soil in Bama, Guangxi, China. Based on 16 S rRNA gene sequence analysis, the three strains were identified as Citrobacter sp.BM-1, Providencia sp.BM-2, and Brucella sp.BM-3. Notably, Brucella sp.BM-3 represents a novel selenium-reducing bacteria. All three strains reduced SeO32- to SeNPs on the cell membrane and subsequently released these nanoparticles outside the cells, forming spherical SeNPs with a particle size of 210-221 nm. Furthermore, qPCR analysis revealed that the selenium-reduction mechanisms in these strains primarily involve the glutathione pathway, which is catalyzed by nitrate reductase and sulfate reductase. These findings suggest that Citrobacter sp.BM-1, Providencia sp.BM-2, and Brucella sp.BM-3 are promising candidates for the synthesis of SeNPs.
期刊介绍:
BMC Microbiology is an open access, peer-reviewed journal that considers articles on analytical and functional studies of prokaryotic and eukaryotic microorganisms, viruses and small parasites, as well as host and therapeutic responses to them and their interaction with the environment.