{"title":"宏基因组学和代谢组学评估肠道微生物群和血液代谢物在脑梗死患者中的潜在作用。","authors":"Wei Huang, Yinghui Chai, Xiang Li, Qiuyue Zhang, Zengkui Yan, Yan Wang, Xiaoyong Tao, Jiatang Zhang, Feng Qiu","doi":"10.1186/s12866-025-04259-y","DOIUrl":null,"url":null,"abstract":"<p><p>Cerebral infarction, a cerebrovascular disorder, is characterized by the sudden onset of neurological deficits and clinical symptoms. It ranks among the leading causes of death and severe disability worldwide. The etiology of cerebral infarction is multifaceted, with common risk factors including dietary patterns, smoking, hypertension, and diabetes mellitus. In recent years, the role of the gut microbiota in systemic immunity and tumorigenesis has been intensively explored, thrusting the research on the gut-brain axis into the spotlight. However, there is a lack of literature investigating the relationship between the gut microbiota and blood metabolites in cerebral infarction. In this study, we employed 16S rRNA analysis and ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) for a comprehensive metagenomic and metabolomic analysis of fecal samples from cerebral infarction patients and the general population. Our results revealed a significant correlation between the gut microbiome and serum metabolites, highlighting the impact of the microbiome on metabolic pathways. Specifically, we found that 35 gut microbiome taxa, such as Actinobacteriota and Peptostreptococcales-Tissierellales, were significantly enriched in the control group (N group). Through Linear Discriminant Analysis Effect Size (LEfSe) analysis, 72 taxa showed significant differences between cerebral infarction patients and healthy individuals. Among them, 22 key taxa were identified as microbial biomarkers for differentiating patients from healthy controls. These findings suggest that variations in the microbiome and metabolites could potentially serve as biomarkers for future diagnostic and therapeutic strategies in cerebral infarction.</p>","PeriodicalId":9233,"journal":{"name":"BMC Microbiology","volume":"25 1","pages":"567"},"PeriodicalIF":4.2000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12399015/pdf/","citationCount":"0","resultStr":"{\"title\":\"Metagenomics and metabolomics to evaluate the potential role of gut microbiota and blood metabolites in patients with cerebral infarction.\",\"authors\":\"Wei Huang, Yinghui Chai, Xiang Li, Qiuyue Zhang, Zengkui Yan, Yan Wang, Xiaoyong Tao, Jiatang Zhang, Feng Qiu\",\"doi\":\"10.1186/s12866-025-04259-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cerebral infarction, a cerebrovascular disorder, is characterized by the sudden onset of neurological deficits and clinical symptoms. It ranks among the leading causes of death and severe disability worldwide. The etiology of cerebral infarction is multifaceted, with common risk factors including dietary patterns, smoking, hypertension, and diabetes mellitus. In recent years, the role of the gut microbiota in systemic immunity and tumorigenesis has been intensively explored, thrusting the research on the gut-brain axis into the spotlight. However, there is a lack of literature investigating the relationship between the gut microbiota and blood metabolites in cerebral infarction. In this study, we employed 16S rRNA analysis and ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) for a comprehensive metagenomic and metabolomic analysis of fecal samples from cerebral infarction patients and the general population. Our results revealed a significant correlation between the gut microbiome and serum metabolites, highlighting the impact of the microbiome on metabolic pathways. Specifically, we found that 35 gut microbiome taxa, such as Actinobacteriota and Peptostreptococcales-Tissierellales, were significantly enriched in the control group (N group). Through Linear Discriminant Analysis Effect Size (LEfSe) analysis, 72 taxa showed significant differences between cerebral infarction patients and healthy individuals. Among them, 22 key taxa were identified as microbial biomarkers for differentiating patients from healthy controls. These findings suggest that variations in the microbiome and metabolites could potentially serve as biomarkers for future diagnostic and therapeutic strategies in cerebral infarction.</p>\",\"PeriodicalId\":9233,\"journal\":{\"name\":\"BMC Microbiology\",\"volume\":\"25 1\",\"pages\":\"567\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12399015/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12866-025-04259-y\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12866-025-04259-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Metagenomics and metabolomics to evaluate the potential role of gut microbiota and blood metabolites in patients with cerebral infarction.
Cerebral infarction, a cerebrovascular disorder, is characterized by the sudden onset of neurological deficits and clinical symptoms. It ranks among the leading causes of death and severe disability worldwide. The etiology of cerebral infarction is multifaceted, with common risk factors including dietary patterns, smoking, hypertension, and diabetes mellitus. In recent years, the role of the gut microbiota in systemic immunity and tumorigenesis has been intensively explored, thrusting the research on the gut-brain axis into the spotlight. However, there is a lack of literature investigating the relationship between the gut microbiota and blood metabolites in cerebral infarction. In this study, we employed 16S rRNA analysis and ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) for a comprehensive metagenomic and metabolomic analysis of fecal samples from cerebral infarction patients and the general population. Our results revealed a significant correlation between the gut microbiome and serum metabolites, highlighting the impact of the microbiome on metabolic pathways. Specifically, we found that 35 gut microbiome taxa, such as Actinobacteriota and Peptostreptococcales-Tissierellales, were significantly enriched in the control group (N group). Through Linear Discriminant Analysis Effect Size (LEfSe) analysis, 72 taxa showed significant differences between cerebral infarction patients and healthy individuals. Among them, 22 key taxa were identified as microbial biomarkers for differentiating patients from healthy controls. These findings suggest that variations in the microbiome and metabolites could potentially serve as biomarkers for future diagnostic and therapeutic strategies in cerebral infarction.
期刊介绍:
BMC Microbiology is an open access, peer-reviewed journal that considers articles on analytical and functional studies of prokaryotic and eukaryotic microorganisms, viruses and small parasites, as well as host and therapeutic responses to them and their interaction with the environment.