{"title":"利用网络药理学等手段,研究厚朴汤剂治疗化脓性链球菌皮肤感染的有效成分及作用机制。","authors":"Yuanhao Wang, Xinrui Wang, Xueying Zhang, Mengyi Pan, Mingyang Sun, Zhiguo Chen, Yingli Song","doi":"10.1186/s40643-025-00933-1","DOIUrl":null,"url":null,"abstract":"<p><p>Infections caused by Streptococcus pyogenes and the growing threat of antibiotic resistance pose significant global health challenges. This study investigates the antibacterial properties of Magnolia officinalis Rheum rhabarbarum Decoction against Streptococcus pyogenes skin infections. By combining UHPLC-MS/MS, network pharmacology, and molecular docking techniques, we identified eight bioactive compounds in the formulation and explored their potential interactions with Streptococcus pyogenes-related targets. Our analysis revealed that compounds such as Sinensetin, Nobiletin, and (+)-Magnoflorine regulate immune pathways (IL-17, TNF), inhibit the production of inflammatory factors, and disrupt bacterial membranes and metabolic processes, achieving dual antibacterial and anti-inflammatory effects. In vitro experiments showed that the decoction exhibited a minimum inhibitory concentration (MIC) of 20 mg/mL against Streptococcus pyogenes, significantly reducing the secretion of pro-inflammatory factors such as IL-1α, IL-6, IL-36, and TNF-α. These results suggest that Magnolia officinalis Rheum rhabarbarum Decoction offers a promising multi-target strategy for treating drug-resistant Streptococcus pyogenes infections and may serve as a potential alternative to traditional antibiotics.</p>","PeriodicalId":9067,"journal":{"name":"Bioresources and Bioprocessing","volume":"12 1","pages":"92"},"PeriodicalIF":5.1000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12381315/pdf/","citationCount":"0","resultStr":"{\"title\":\"Utilizing network pharmacology and other tools to examine active components and mechanism of action of Magnolia officinalis rheum rhabarbarum decoction in treating Streptococcus pyogenes skin infections.\",\"authors\":\"Yuanhao Wang, Xinrui Wang, Xueying Zhang, Mengyi Pan, Mingyang Sun, Zhiguo Chen, Yingli Song\",\"doi\":\"10.1186/s40643-025-00933-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Infections caused by Streptococcus pyogenes and the growing threat of antibiotic resistance pose significant global health challenges. This study investigates the antibacterial properties of Magnolia officinalis Rheum rhabarbarum Decoction against Streptococcus pyogenes skin infections. By combining UHPLC-MS/MS, network pharmacology, and molecular docking techniques, we identified eight bioactive compounds in the formulation and explored their potential interactions with Streptococcus pyogenes-related targets. Our analysis revealed that compounds such as Sinensetin, Nobiletin, and (+)-Magnoflorine regulate immune pathways (IL-17, TNF), inhibit the production of inflammatory factors, and disrupt bacterial membranes and metabolic processes, achieving dual antibacterial and anti-inflammatory effects. In vitro experiments showed that the decoction exhibited a minimum inhibitory concentration (MIC) of 20 mg/mL against Streptococcus pyogenes, significantly reducing the secretion of pro-inflammatory factors such as IL-1α, IL-6, IL-36, and TNF-α. These results suggest that Magnolia officinalis Rheum rhabarbarum Decoction offers a promising multi-target strategy for treating drug-resistant Streptococcus pyogenes infections and may serve as a potential alternative to traditional antibiotics.</p>\",\"PeriodicalId\":9067,\"journal\":{\"name\":\"Bioresources and Bioprocessing\",\"volume\":\"12 1\",\"pages\":\"92\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12381315/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresources and Bioprocessing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s40643-025-00933-1\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources and Bioprocessing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40643-025-00933-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Utilizing network pharmacology and other tools to examine active components and mechanism of action of Magnolia officinalis rheum rhabarbarum decoction in treating Streptococcus pyogenes skin infections.
Infections caused by Streptococcus pyogenes and the growing threat of antibiotic resistance pose significant global health challenges. This study investigates the antibacterial properties of Magnolia officinalis Rheum rhabarbarum Decoction against Streptococcus pyogenes skin infections. By combining UHPLC-MS/MS, network pharmacology, and molecular docking techniques, we identified eight bioactive compounds in the formulation and explored their potential interactions with Streptococcus pyogenes-related targets. Our analysis revealed that compounds such as Sinensetin, Nobiletin, and (+)-Magnoflorine regulate immune pathways (IL-17, TNF), inhibit the production of inflammatory factors, and disrupt bacterial membranes and metabolic processes, achieving dual antibacterial and anti-inflammatory effects. In vitro experiments showed that the decoction exhibited a minimum inhibitory concentration (MIC) of 20 mg/mL against Streptococcus pyogenes, significantly reducing the secretion of pro-inflammatory factors such as IL-1α, IL-6, IL-36, and TNF-α. These results suggest that Magnolia officinalis Rheum rhabarbarum Decoction offers a promising multi-target strategy for treating drug-resistant Streptococcus pyogenes infections and may serve as a potential alternative to traditional antibiotics.
期刊介绍:
Bioresources and Bioprocessing (BIOB) is a peer-reviewed open access journal published under the brand SpringerOpen. BIOB aims at providing an international academic platform for exchanging views on and promoting research to support bioresource development, processing and utilization in a sustainable manner. As an application-oriented research journal, BIOB covers not only the application and management of bioresource technology but also the design and development of bioprocesses that will lead to new and sustainable production processes. BIOB publishes original and review articles on most topics relating to bioresource and bioprocess engineering, including: -Biochemical and microbiological engineering -Biocatalysis and biotransformation -Biosynthesis and metabolic engineering -Bioprocess and biosystems engineering -Bioenergy and biorefinery -Cell culture and biomedical engineering -Food, agricultural and marine biotechnology -Bioseparation and biopurification engineering -Bioremediation and environmental biotechnology