Matija Lagator, Siyu Liu, C Logan Mackay, Felicia Green
{"title":"真空暴露对质谱分析样品稳定性的影响。","authors":"Matija Lagator, Siyu Liu, C Logan Mackay, Felicia Green","doi":"10.1116/6.0004632","DOIUrl":null,"url":null,"abstract":"<p><p>Mass spectrometry (MS) often requires vacuum conditions, which, while beneficial for analysis, can unpredictably alter sensitive samples. This study investigates the impact of prolonged vacuum exposure on the consistency and reliability of MS detection of thin films of acetaminophen using secondary ion mass spectrometry (SIMS). Under vacuum at room temperature, the mass spectrometry signal intensity decreased by approximately 81.5% over the duration of the experiment (42 h). Optical microscopy revealed that this decrease coincided with sublimation-induced sample loss of the acetaminophen. As a result, acetaminophen coverage across the substrate became heterogeneous, leading to increased relative standard deviation (RSD) in the SIMS signal over time. In contrast, under cryogenic conditions, neither signal degradation nor an increase in RSD was observed. Additionally, a comparison with atmospheric pressure mass spectrometry revealed that, in the absence of vacuum, signal intensity remained more stable over time. These findings highlight the potential drawbacks of vacuum exposure for volatile standards and emphasize the importance of testing vacuum effects prior to analysis. If vacuum is necessary, cryogenic conditions should be considered to mitigate sample degradation. While these effects were observed for a mass spectrometry technique, they are also applicable to any type of vacuum-based methodology where the samples might be prone to sublimation.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"20 4","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of vacuum exposure on sample stability for mass spectrometry analysis.\",\"authors\":\"Matija Lagator, Siyu Liu, C Logan Mackay, Felicia Green\",\"doi\":\"10.1116/6.0004632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mass spectrometry (MS) often requires vacuum conditions, which, while beneficial for analysis, can unpredictably alter sensitive samples. This study investigates the impact of prolonged vacuum exposure on the consistency and reliability of MS detection of thin films of acetaminophen using secondary ion mass spectrometry (SIMS). Under vacuum at room temperature, the mass spectrometry signal intensity decreased by approximately 81.5% over the duration of the experiment (42 h). Optical microscopy revealed that this decrease coincided with sublimation-induced sample loss of the acetaminophen. As a result, acetaminophen coverage across the substrate became heterogeneous, leading to increased relative standard deviation (RSD) in the SIMS signal over time. In contrast, under cryogenic conditions, neither signal degradation nor an increase in RSD was observed. Additionally, a comparison with atmospheric pressure mass spectrometry revealed that, in the absence of vacuum, signal intensity remained more stable over time. These findings highlight the potential drawbacks of vacuum exposure for volatile standards and emphasize the importance of testing vacuum effects prior to analysis. If vacuum is necessary, cryogenic conditions should be considered to mitigate sample degradation. While these effects were observed for a mass spectrometry technique, they are also applicable to any type of vacuum-based methodology where the samples might be prone to sublimation.</p>\",\"PeriodicalId\":9053,\"journal\":{\"name\":\"Biointerphases\",\"volume\":\"20 4\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biointerphases\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0004632\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0004632","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Effects of vacuum exposure on sample stability for mass spectrometry analysis.
Mass spectrometry (MS) often requires vacuum conditions, which, while beneficial for analysis, can unpredictably alter sensitive samples. This study investigates the impact of prolonged vacuum exposure on the consistency and reliability of MS detection of thin films of acetaminophen using secondary ion mass spectrometry (SIMS). Under vacuum at room temperature, the mass spectrometry signal intensity decreased by approximately 81.5% over the duration of the experiment (42 h). Optical microscopy revealed that this decrease coincided with sublimation-induced sample loss of the acetaminophen. As a result, acetaminophen coverage across the substrate became heterogeneous, leading to increased relative standard deviation (RSD) in the SIMS signal over time. In contrast, under cryogenic conditions, neither signal degradation nor an increase in RSD was observed. Additionally, a comparison with atmospheric pressure mass spectrometry revealed that, in the absence of vacuum, signal intensity remained more stable over time. These findings highlight the potential drawbacks of vacuum exposure for volatile standards and emphasize the importance of testing vacuum effects prior to analysis. If vacuum is necessary, cryogenic conditions should be considered to mitigate sample degradation. While these effects were observed for a mass spectrometry technique, they are also applicable to any type of vacuum-based methodology where the samples might be prone to sublimation.
期刊介绍:
Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee.
Topics include:
bio-surface modification
nano-bio interface
protein-surface interactions
cell-surface interactions
in vivo and in vitro systems
biofilms / biofouling
biosensors / biodiagnostics
bio on a chip
coatings
interface spectroscopy
biotribology / biorheology
molecular recognition
ambient diagnostic methods
interface modelling
adhesion phenomena.