Alexandra L Mutch, María Natividad Gómez-Cerezo, Lisbeth Grøndahl
{"title":"聚己内酯基生物材料的表面功能化:良好的实践和缺陷。","authors":"Alexandra L Mutch, María Natividad Gómez-Cerezo, Lisbeth Grøndahl","doi":"10.1116/6.0004773","DOIUrl":null,"url":null,"abstract":"<p><p>Poly(ɛ-caprolactone) (PCL) remains widely studied in biomaterials science and biomedical engineering due to its versatility and applicability in regenerating a range of tissues including bone, cartilage, neural, and cardiovascular. Due to the hydrophobicity of PCL, most PCL based systems for tissue regeneration require a surface modification process to enhance its in vitro and in vivo compatibility. This Perspective aims to provide an overview of recent strategies used to modify 2D films and 3D scaffolds and the associated methods used to characterize these surfaces. The scope is restricted to physical and chemical postmodification methods, excluding blends and composites, to better isolate the effects of surface chemistry. By analyzing the latest studies (published in 2022-2024), we classified the most commonly employed surface modification techniques, and we identified that the surface evaluation of tailored PCL remains a critical challenge in terms of both chemical and morphological characterization as well as the stability of the introduced surface layer/coating. This status of recent literature highlights current excellent practices and characterization methodologies and suggests approaches for refining surface engineering methods of PCL-based biomaterials in the future.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"20 4","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface functionalization of polycaprolactone-based biomaterials: Good practice and pitfalls.\",\"authors\":\"Alexandra L Mutch, María Natividad Gómez-Cerezo, Lisbeth Grøndahl\",\"doi\":\"10.1116/6.0004773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Poly(ɛ-caprolactone) (PCL) remains widely studied in biomaterials science and biomedical engineering due to its versatility and applicability in regenerating a range of tissues including bone, cartilage, neural, and cardiovascular. Due to the hydrophobicity of PCL, most PCL based systems for tissue regeneration require a surface modification process to enhance its in vitro and in vivo compatibility. This Perspective aims to provide an overview of recent strategies used to modify 2D films and 3D scaffolds and the associated methods used to characterize these surfaces. The scope is restricted to physical and chemical postmodification methods, excluding blends and composites, to better isolate the effects of surface chemistry. By analyzing the latest studies (published in 2022-2024), we classified the most commonly employed surface modification techniques, and we identified that the surface evaluation of tailored PCL remains a critical challenge in terms of both chemical and morphological characterization as well as the stability of the introduced surface layer/coating. This status of recent literature highlights current excellent practices and characterization methodologies and suggests approaches for refining surface engineering methods of PCL-based biomaterials in the future.</p>\",\"PeriodicalId\":9053,\"journal\":{\"name\":\"Biointerphases\",\"volume\":\"20 4\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biointerphases\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0004773\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0004773","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Surface functionalization of polycaprolactone-based biomaterials: Good practice and pitfalls.
Poly(ɛ-caprolactone) (PCL) remains widely studied in biomaterials science and biomedical engineering due to its versatility and applicability in regenerating a range of tissues including bone, cartilage, neural, and cardiovascular. Due to the hydrophobicity of PCL, most PCL based systems for tissue regeneration require a surface modification process to enhance its in vitro and in vivo compatibility. This Perspective aims to provide an overview of recent strategies used to modify 2D films and 3D scaffolds and the associated methods used to characterize these surfaces. The scope is restricted to physical and chemical postmodification methods, excluding blends and composites, to better isolate the effects of surface chemistry. By analyzing the latest studies (published in 2022-2024), we classified the most commonly employed surface modification techniques, and we identified that the surface evaluation of tailored PCL remains a critical challenge in terms of both chemical and morphological characterization as well as the stability of the introduced surface layer/coating. This status of recent literature highlights current excellent practices and characterization methodologies and suggests approaches for refining surface engineering methods of PCL-based biomaterials in the future.
期刊介绍:
Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee.
Topics include:
bio-surface modification
nano-bio interface
protein-surface interactions
cell-surface interactions
in vivo and in vitro systems
biofilms / biofouling
biosensors / biodiagnostics
bio on a chip
coatings
interface spectroscopy
biotribology / biorheology
molecular recognition
ambient diagnostic methods
interface modelling
adhesion phenomena.